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1. Introduction

This review is concerned with the theoretical and com-
putational modeling of bimolecular reactions, especially with
generally applicable methods for kinetics (i.e., overall rates
as opposed to detailed dynamics). It includes a basic
theoretical framework that can be used for gas-phase thermal
reactions, gas-phase microcanonical and state-selected reac-
tions, and condensed-phase chemical reactions. The treatment
of gas-phase thermal reactions includes separate discussions
of simple direct reactions over a barrier, which usually have
tight transition states and reactions proceeding over a
chemical potential well, which can have a number of
additional complications, such as barrierless addition poten-
tials (which generally have loose, flexible transition states),
competitive reaction pathways, isomerizations between mul-
tiple wells, and pressure-dependent energy transfer processes.
The section on thermal reactions has a heavy emphasis on
(generalized) transition state theory (TST) including multi-
dimensional tunneling because this theory provides the best
available method to calculate thermal rate constants for all
but the very simplest systems. The section on state-selective
reactions and product state distributions includes an introduc-
tion to the theory of electronically nonadiabatic reactions
and coupled potential energy surfaces, as required for
modeling photochemical and chemiluminescent reactions.
The section on bimolecular reactions in liquid solution
considers diffusion control and equilibrium and nonequilib-
rium solvation.

2. Gas-Phase Thermal Reactions

2.1. Thermodynamics: Enthalpies and Free
Energies of Reaction

The rate constant (or, equivalently, rate coefficient) for a
pressure-independent bimolecular reaction is defined experi-
mentally as follows. Two substances A and B (reactants)
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undergo an elementary gas-phase reaction
A+B=C + - +C, (2.1.1)

where G, ..., G are products. Equation 2.1.1 with= 3
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Usually the rate constant is measured under conditions where

implies that three products are formed from two reactants.
This happens quite frequently in very exothermic reactions,
where a product can be formed with a very large amount of
internal energy, enough that the molecule can dissociate
spontaneously before it is stabilized by collisions with other
molecules. One might view this physically as a two-step
process: At B — C; + C,Cs* followed by G,Cs* — C, +
Cs. Similarly, again forn = 3, the reverse formally
termolecular reactions may be described as two bimolecular
reactions. (We shall not be concerned with the mechanism
of termolecular reactions in this review.)

Number densities, that is, concentrations (denoted [A], [B], . o . .
...) can be monitored as a function of time and fitted to the WhereR is the gas constan@y is the value of the reaction
phenomenological second-order rate law quotient at the standard state, and

d[A] n AGY(T) = AHY(T) — TAS’

———=KA][B] — K| |IC] (2.1.2)
dt = where AHY and AS} are the standard-state enthalpy and

entropy of reaction, respectively. The standard state for gas-
phase molecules can be an ideal gas at a partial pressure of
"1 atm or any stated concentration, e.g., £ amolecule® or
1 mol L% the standard-state for liquid-phase solutes can
be an ideal solution with a concentration of 1 mof‘Letc.

In general, the free energy change upon reaction is

the second term in eq 2.1.2 is negligible. In this chkggyes
the total rate constant for formation of all products. Com-
plications arise if the states of A or B are not thermally
equilibrated or if back reaction occurs from unequilibrated
productst

The temperature-dependent equilibrium constant is related
to the standard-state Gibbs free energy of reactiddy(T)
at temperatur@ by

K = QX(T) exp[~AGYRT] (2.1.4)

(2.1.5)

wherek and k' are the forward and reverse temperature-
dependent rate constants (or rate coefficients), respectively
The equilibrium constant, for the process is given by the
guotient of the forward and reverse rate constaiisg the
reaction quotient is defined by

n

D[Ci] AG = RTIn %
- (2.1.3)

(2.1.6)

Q —
“ [AlB]

If the free energy change is zero, the reaction is at
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equilibrium. If AG] or AG is negative, the reaction may be
called exergonic (work-producing), and if either of these
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guantities is positive, the reaction may be called endergonic
(work-consuming).

The enthalpy of reaction (heat of reaction at constant
pressure) is negative for an exothermic reaction (which
releases heat) and positive for an endothermic reaction (which
absorbs heat) and can be obtained at a given temperature
from the enthalpies of formation of the reactants and
products. For an electronically adiabatic reaction, the en-
thalpy of reaction a0 K may be calculated quantum
mechanically as the change in Ber®ppenheimer electronic
energy (which includes nuclear repulsion) plus the change
in zero point vibrational energy. The Bor®ppenheimer
electronic energy is the potential energy surface for nuclear
motion. A reaction with a negative potential energy of
reaction is called exoergic, and one with a positive energy
of reaction is called endoergic. A reaction with a negative
change in free energy is called exergonic, and one with a
positive change in free energy is called endergonic.

The enthalpy of reaction can also be computed by Hess’s
law as the sum of the heats of formation of the products
minus the sum of the heats of formation of reactants. Recent
progress in electronic structure calculatibaiows one to
compute enthalpies of formation with chemical accufacy
(~1 kcal/mol) for most systems with up to about 50
electrons! For larger systems, one should probably judge
the accuracy in terms of kcal/mol per bond. Transition metals
provide a more severe test, and typical errors of even the
best methods are often several kcal/mol per bond.

2.2. Kinetics

2.2.1. Arrhenius Parameters and Free Energy of
Activation

From a phenomenological point of view, numerous
experiments have shown that the variation of the rate constant
with temperature can be described by the Arrhenius eqiation

k= Aexp(—E/RT) (2.2.2)
where A is the preexponential or frequency factor, which
may have a weak dependence on temperatureEaisithe
activation energy. A plot of Irk versus 1T is called an
Arrhenius plot. If a reaction obeys the Arrhenius equation,
then the Arrhenius plot should be a straight line with the
slope and the intercept beingEy/R andA, respectively. The
activation energy can be very roughly interpreted as the
minimum energy (kinetic plus potential, relative to the lowest
state of reactants) that reactants must have to form products
(the threshold for reaction), and the preexponential factor is
a measure of the rate (collision frequency) at which collisions
occur. A more precise interpretation Bf was provided by
Tolman®7 who showed that the Arrhenius energy of activa-
tion is the average total energy (relative translational plus
internal) of all reacting pairs of reactants minus the average
total energy of all pairs of reactants, including nonreactive
pairs. The best way to interprétis to use transition state
theory, which is explained below.

Although transition state theory will be presented in detall
in Sections 2.4 and 2.5, it is useful to anticipate here the
general form of the result. For bimolecular reactions, TST
yields an expression of the form

KT) = ﬁ—lhy(T)Ko expCAGHIRT)  (2.2.2)
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where AG° is the quasithermodynamic free energy of distribution ofVi; the result i$*1516

activation, andy(T) is a transmission coefficienk? is the N

reciprocal of the standard state concentrattors, Planck’s Kk = ﬁ(_ﬁ) f°° dE o E 0,(E) eXpPE,) (2.2.7)
constant, ang is 1kgT, wherekg is Boltzmann’s constant. ) 70

(Note that some formulations include a symmetry number
that counts equivalent paths to the transition state; however,
we omit this and include symmetry numbers AGH°,
which is equivalerit® and allows symmetry effects to be
included by the same methods that are well established for. . . .
real equilibria.) It is common practice, especially for reaction is the relative translational energy, wittbeing the reduced

- = i : mass of relative translational motion.
kinetics in the liquid phase, to write eq 2.2.2 as It is also possible to obtain state-selected thermal rate

where

E.o = uVg/2 (2.2.8)

1 constants by considering separately each of the internal states
k(T) = %K" exp(—AGL(T)/RT) (2.2.3)
88\112 o
kij =ﬁ(ﬂ_ﬁ) ,/(; Ereloij(EreI) exp(_ﬁErel)dErel (2'2-9)
whgre _AGgm('D is the phenomenological free energy of M
activation. Clearly Sometimes it is also useful to define the reaction prob-

o to ability Pr as a function of the impact parametgmwhich is
AG,(T) = AG" = RTIn y(T) (2.2.4) defined as the distance of closest approach between the two
o molecules in the absence of interparticle forces. The prob-
2.2.2. Collision Theory ability of reaction decreases to zero for lardgeActually,
In this section, we briefly discuss collision theory. Col- We can consider a value bf= braxafter which the reaction

lision theory is necessary if one wants to discuss differential Probability is negligible, and the reaction cross section is

cross sections or most state-selected phenoffdmat, the given by
present article is more focused on thermally averaged rate

Prmax
constants. For rate constants, it has been emphasized that o, =27 [, "Pr(b)bdb (2.2.10)
collision theory and transition state theory make the same
predictions if the same criterion is used for reactibn. The simplest model is to consider the reactants as hard

However, the theories are also complementary in that onespheres that do not interact with each other if the intermo-
or another may be more convenient for a specific application. lecular distance is larger than the arithmetic averdgsf
Furthermore, collision theory can be used to provide a their diameters, and sex(b > d) = 0, but that react at all
foundation for deriving transition state thedfy'4 We shorter distances $2(b < d) = 1. For this case the reaction
consider collision theory first. cross section igd?, and by applying eq 2.2.7 one finds that
Simple collision theory provides useful insight into the the reaction rate equals
temperature dependence and magnitude of bimolecular rate
constants. There are several possible outcomes for a collision K(T) = (1)1’2 P 2.2.11)
of atom or molecule A in internal statevith molecule B in up o
internal statg:
(i) Elastic collision: Neither the arrangement (composition ~ The thermally averaged value of the relative speed is
and bonding pattern), nor the internal state of the molecules, g \12
nor the relative translational energy changes; the only change \_/R = (_) (2.2.12)
is in the direction of their relative motion. 7T
(i) Inelastic collision: The two molecules retain their .
arrangement but change their internal states. so that eq 2.2.11 can be rewritten as
(iii) Reactive collision: The two molecules react to form
one or more new molecules, for example, C in internal state
m and D in the internal state. -
In case (iii), where a number of A(are incident in abeam  In other wordsk is usually the thermal averagé:o, of
with relative velocityVg upon a scattering zone containing Vror, but_if o; is independent of relative speed, thin
B(j), we may define the state-selected rate constaaind becomesVgro:. Equation 2.2.11 does not account for the

k = Vgrd? (2.2.13)

reaction cross sectiom; such that observed experimental behavior described by the Arrhenius
equation, since it predicts a temperature dependendé?of
ki (Vr) = Vroy(VR) (2.2.5) for the rate constant.

An improvement of this model is the reactive hard spheres
The average reaction cross sectipis obtained by averaging ~ model in which it is assumed that the reaction occurs if

over all the reactants internal states: uVioc?2 exceeds a threshold energ, whereVioc is the
relative velocity along the line of centers, i.e., in the direction
0,= Z\A,iA\A)jaoij(VR) (2.2.6) connecting the centers of the two spheres. This velocity
]

depends on the impact parameter so that the reaction is
assumed to occur if

where W' and w® represent the Boltzmann weighting

factors of thei andj reactant internal states, respectively. E° < Eo(1— b2/d2) (2.2.14)

The thermal rate constant for the process is given by

averagingVgo, over an equilibrium MaxweltBoltzmann Then the reaction cross section is
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o, =ab,2=nad(1-EYE,)  (2.2.15)
and the rate constant is
K(T) = nolz(i)”2 expBEY)  (2.2.16)
e 2.

which is similar to the Arrhenius expression and predicts a
variation with temperature of*? for the preexponential
factor. A problem with the reactive hard spheres model is
that it does not predict the preexponential factor is much
smaller than the gas-kinetic collision rate, although one finds
experimentally that this is often the case. To solve this
problem, a multiplicative empirical steric factgr was

introduced into the rate constant (2.2.16). The main problem
with these models is that they do not consider that a molecule

may react only when it is oriented in a particular manner,
nor do they account for the shapes and rotatiomédrational

motions of the reactants. These limitations are overcome by

transition state theory.
Analytical expressions have been given for the thermal
rate constants using other forms fgr718

One case where reactions often occur without a barrier

(and hence where collision theory can be particularly useful)
is the collision of an ion with a neutral molecule. A useful
simple model for this case is the Langevin mot¥et! which
assumes that the ion is a point charge and the molecule is
structureless sphere with polarizability It is assumed that

at long range only the ion-induced dipole attractive term
in the potential is important; the effective potential is then
given by

lag? , L?
A2

wherer is the distance between collision partnegss the
charge of the ion, and is the orbital angular momentum.
(In later sections, the classidat is replaced by the quantal
I(I + 1), wherel is the orbital quantum number.) The first
term in eq 2.2.17 is the ion-induced dipole potential, and
the second term is the centrifugal potential. Because
uVrb and using (2.2.8), we obtain

(2.2.17)

b\2
+ Erel(F)

1aq”

Verl) = =55 (2.2.18)

The effective potential in eq 2.2.18 has a single maximum
at a radiug, given by

1 aq2)1/2
r.==l=- 2.2.19
b(Erel ( )
and the effective potential at the maximum is
Vyr = D 2.2.20
off s = 20 (2.2.20)

The critical impact parametds, is obtained fromVes+ and
is given by*
b. = (2ag%/E )" (2.2.21)

and the reaction cross section is
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2

1/2
o=nb?= n(—zaq )
Erel

(2.2.22)
Thus,Vro, in eq 2.2.5 is independent &k. If Erel < Vet
the centrifugal barrier cannot be penetrated (if tunneling is
neglected), and no reaction occursElf; = Ve the ion is
captured into a circular orbit of radiusaround the molecule.
Finally, if Ere) > Vers» the ion can move inside the centrifugal
barrier, and the reaction probability is assumed to be equal
to unity.

The thermal rate constants obtained by the Langevin model
are independent of temperature and velocity and are given

by

k = 271(“7‘*2)1/2 (2.2.23)

For some reactions involving nonpolar molecules, the
Langevin model cross sections agree quite well with experi-
ment even at translational energies up to 5%&%,but in
general the model is only valid when the cross sections
exceed the hard-sphere cross sections. The hard-sphere
diameter for an ion can be estimated in various ways, for
example, by computing the potential energy curve or
potential energy surface for its interaction with a neon atom,
whose hard-sphere radius is known. At lafge, b, be-

%omes less than the suof the effective hard-sphere radii

of the collision partners so a better model is
2 1/2
.7'[(2(1(:] /Erel)

o, =ma
>{nd2

An analogue of the Langevin iefdipole model for neutral
reactions without a barrier (the most common examples of
these are many radicatadical reactions) is the Gorin model
which replaces-ag¥2rin eq 2.2.17 by—(Cs/r6)?>*-2° where
Cs is a constant. With the Gorin model, the thermal rate
constant is given by

(2.2.24)

Keoin(T) = \//%2”’%(%)(06)”3(@7”6 (2.2.25)

This predicts a centrifugal barrier at much smalethan
that of the Langevin model, and it is much less likely that
actual molecules can be treated as structureless and isotropic
at this distance than the ietmolecule partners can be treated
as structureless and isotropic at their centrifugal barrier.
Therefore, reactions between neutral molecules are less likely
than ionic reactions to be dominated by the long-range force
law. It has been suggested that a steric factor can be used to
correct for such deficiencie®,but such corrections tend to
be purely empirical, providing little physical insight. More
sophisticated methods for treating both neutral and ionic
reactions without a barrier are considered in Section 2.5.
The Langevin model and later improvements are still
useful for current work and are widely used; however,
analytic collision theory has been largely overtaken by more
detailed and accurate TST calculations and by the use of
classical trajectory calculations. The latter allow the study
of the dynamics at the microscopic level (differential cross
sections, total cross sections, product energy distributions,
etc., ...), as well as at the macroscopic level (thermal rate
constants by numerical or Monte Carlo integration of eq
2.2.7), by solving the classical equations of motion. To run
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the trajectories, a potential energy surface should be suppliedhuclear coordinates of the system. According to the Born
(its construction is discussed in the next section) together Oppenheimer approximaticf, ¢ it is equal to the adiabatic
with the initial conditions for the coordinates and momenta. electronic energy, including nuclear repulsion. The electroni-
To sample as much as possible of the initial phase spacecally adiabatic energf of the system is given by
(coordinates and momenta) and to get meaningful results,

many trajectories (usually thousands or tens of thousands) E=Ts+ Vig(R)+ E(ye')(R) (2.3.1)
should be run. Often one restricts the initial vibrational

energies in the various vibrational modes to their allowed whereR is the set of 8/ — 6 independent coordinatek; is
quantized values, and when this is done the method is usuallyihe nuclear kinetic energy, andx(R) and E(e')(R) are the
called the quasiclassical trajectory (QCT) methd@CT ~ ,cjear Coulombic repulsion energy and the electronic
calculations can give accurate results when dynamical energy, respectively. The subscript & denotes the

quantum effects such as zero point energy, tunneling, andelectronic uantum number, and we consider this to be the
resonances are not important. Meth8d¥ for trajectory q — ' :
ground state f = 1). Thus, the potential energy for the

calculations and a summary of classical mo¥fdts reactive ; o
-~ : . . X motion of the nuclei is
collisions are available in reviews in other books.

For thermal rate constants of most chemical reactions,
trajectory calculations suffer from two major defects: (i)
failure to maintain zero point energy in modes transverse to
the reaction coordinate, and (i) inability to include tunneling.

V(R) = V\x(R) + E¥)(R) (2.3.2)

In the case of a bimolecular reaction, the PES should cover
Defect (i) has been called “nonadiabatic leak,” and it tends the range of geometries from separated reactants through the
strong interaction region and on to the separated products.

to make trajectory-calculated rate constants too l&fge. If the two f ts A and B ; t there |
Several methods have been proposed for alleviating this, but' '€ WO fragments A and b are very 1ar apart, theére IS no

none are satisfactoRj.There have also been attempts to add Nteraction between them and the potential energy is the sum
tunneling to trajectory calculations, and a recent study of the potential energies of the fragments. When the

suggests that such methods deserve further investig&tion. frlag?;errllits Iapzroar?t?f therrr?mlsn |r|1tet[<’;1c::ion Ibe(tjv;/e?nm;thglr
Even more accurate information can be obtained by eiectronic clouds until & common electronic cloud 1S formed.

performing quantum mechanical scattering calculatiri. The forces due to the electron cloud .chan.ge during this
For systems with only a few atoms, one can even calculate Process, and these forces are the gradient field of the PES.

. . : (el) ; . . . .
converged reaction cross sections and rate constants for a SinceE,™ is an eigenvalue of the electronic Hamiltonian,
given potential energy surface. For example, very accurateth® PES can be obtained by electronic structure calculations.
calculations are available for the B H,5°51and H+ H,53 Some workers divide electronic structure methods into ab

reactions. A recent review includes applications to bimo- INitio and semiempirical. *Models which utilize only the

lecular reactions with up to six atori&The early work on  fundamental constants of physics are generally termed ab
applying scattering theory to chemical reaction rates involved Nitio; if some parameters are introduced which are deter-
first calculating converged state-to-state cross secfiamsl ~ Mined by_f'_tt'”% to some experimental data, the methods are
then summing these over product states and averaging then§gmlempmcal. Although purists prefer ab initio methods,

over thermal initial conditions. More recent work calculates 1t iS usually necessary, except for very small systems, to use
the converged thermal constant without generating or evenSemiempirical methods to obtain satisfactory results, either

implicitly converging the state-to-state details. This kind of Semiempirical molecular orbital theory or high-level cor-
treatment is based on time-dependent flux correlation func- '¢lated methods with semiempirical parameters. Furthermore,
tions5455 which can be calculated by time-dependéit even when high-level ab initio methods are affordable, they

time-independeft quantum mechanics. We return to this are usually less efficient than semiempirical methods.
topic in Section 2.4.7. Hartree-Fock (HF) theor§?-% and Mgller-Plesset second-
order perturbation theof§%” (MP2) are examples of low-
2.3. Saddle Points and Potential Energy Surfaces level ab initio methods; the former is inaccurate because of
the neglect of electronic correlation, but it can be improved
In many cases, it is possible to separate the motion of the(and, as a bonus, made less expensive) if some matrix
electrons from the motion of the nuclei, because the nuclei elements are substituted by empirical parameters. Two of
move more slowly due to their higher mass. The condition the most successful of the semiempirical methods are the
for the motion of both particles to be separable is that the AM1%8 and PM3° semiempirical molecular orbital methods,
nuclear motion should proceed without change in the implemented in the popular MOPAC progréghand many
quantum state of the electron cloud and, in this case, theother electronic structure packages. These methods, however,
potential energy is only a function of the nuclear coordinates. are often not accurate enough for practical work.
This approximation is known as the Ber@ppenheimer or Higher accuracy can be obtained by including electron
electronically adiabatic approximation, and it is equivalent correlation and extending the basis sets used in the calcula-
to assuming that the motion of the atoms does not causetion. To use a method that accounts fat the electron
real or virtual transitions between different electronic states. correlation, like full configuration interaction with a large
This condition is met if the electronic states are well one-electron basis set, is feasible only for very small systems,
separated from each other. In this review, except in Sectionand the increase of either the level of correlation or the basis
3.2 and one paragraph of Section 4.1, we consider systemsset increases the cost of the calculation. Low-order treatments
in the ground electronic state for which the Bet@ppen- of correlation energy, as in MP2, are quantitatively inaccurate
heimer approximation is valid. for kinetics, and higher-order correlated wave function
The study of the dynamics of a chemical reaction requires theory, such as coupled cluster thedr with single and
knowledge of the potential energy surface (PES) for nuclear double excitations and a quasiperturbative treatment of
motion. The PES is the potential energy as a function of the selected connected triple excitatiofigalled CCSD(T), is
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slowly convergent with respect to increasing the size of the Table 1. Electronic Structure Calculations of the Bond Lengths
one-electron basis set. However, if one can afford CCSD- g)é(ﬁong Andle (deg). and Bartler Height (kcalimol) of the
(T) calculations with two or more basis sets one can often >2dd!e Point of the F+ H. eaction

extrapolate to the infinite-basis (IB) limit, also called the Vi
complete-basis-set (CBS) limit, and this often yields results  method F-H H-H  F-H-H nonrel rel
good to 1 kcal/mol:7 SEC 161164 0.740.76 104130 1.0-1.3 1.4-17
Although CCSD(T) is generally very useful, it does not MR-CISD  1.55 0.77 119 15 1.9
describe bond breaking accurately if one considers bond MCG3 151 0.775 128 2.8 32
distances larger than those in typical atom-transfer transition 1.54 0.77 118 L5 L9
D p . FN-DQMC  1.53 0.77 118 1.4 1.8
states. For such applications as well as some other “multi- 15 ASpr.o 153 0.77 117 14 18
reference” situations, a “completely renormalized” (CR) _
coupled cluster theory is more accuréte’® ® Version 2s.

A variety of one-electron basis sets are available. A major
breakthrough in understanding basis-set convergence wastries and classical barrier heights for the-FH, — HF +
provided by analyzing atomic natural orbita¥sand this led H reaction as calculated by five high-level methods: scaling
to Dunning’s correlation-consistent polarized (cc-p) basis external correlatiof?113(SEC), multireference configuration
sets®® which are available in sequences of increasing quality, interaction with single and double substitutifs(MR-
e.g., valence doublé-(cc-pvDZ), valence triplez (cc- CISD), multi-coefficient Gaussiant® (MCG3), multiref-
pVTZ), valence quadruplé-(cc-pvVQZ), et When sys- erence coupled clusté? (MRCC), fixed-node diffusion
tematic sets of diffuse functions are included, a prefix aug- quantum Monte Carfd” (FN-DQMC), andri-averaged
is added (denoting “augmented?)Less systematic, but often  coupled-pair functional® (r;-ACPF-2) calculations. The
more economical, basis sets were developed by Pople andsalues of the classical barrier height are tabulated in all cases
co-workers. For example, 6-315(d,pf2 is an economical  both with and without the relativistic spirorbit contribution
alternative to aug-cc-pVDZ, and MG89s an economical  of 0.39 kcal/mol. The table shows good convergence of the
alternative to aug-cc-pVTZ. For H though Si, MG3S is the most complete calculatiofd '8 and reasonable agreement
same as 6-3G(3d2f,2df,2pf3 whereas for P through ClI  with the original calculations that predicted a bent transition
it differs from G3Largé& by the deletion of core polarization  state!!2113in contrast to the collinear transition state that
functions on nonhydrogenic atoms and diffuse functions on had been inferred from semiempirical valence bond calcula-
H. We note that the versatile 6-35G(d,p) basis has also tions!*®unconverged ab initio calculatio®®,and molecular
been called DIDZ (“desert-island doubi®) to denote its beam experiments!
general usefulness, and MG3S could similarly be called The electronic structure methods in the previous para-
DITZ.%® Some workers prefer other basis sets such asgraphs all involve wave function theory (WFT). A different
6-311-+G(d,py® which is correlation inconsistent but approach, less expensive in computer time, is based in the

nevertheless often gives reasonably well-converged geom-Kohn—Sham implementation of density functional theory
etries or vibrational frequencies at lower expense than aug-(DFT) 122123 especially hybrid DFT4 and hybrid meta

cc-pVTZ. Another useful “inconsistent” basis is 6-31G- DFT25 methods, which are versions of DFT with nonlocal
(3df,2pd)? The popular 6-31G(d) and 6-315(d,p) basis sets,  density functionals. These methods account for the electron
the balanced 6-31B(d) basis $éthe economical MIDF? correlation energy and part of the electron exchange energy

and MIDIY® basis sets, split-valence polarized (SVP) b&Ssis, through functionals of the density and density gradient
and the core-pruned general contractinsay be useful for  (DFT), through such functionals plus nonlocal exchange
calculations on large molecules. operators (hybrid DFT), and through such functionals plus
Another useful strategy is to use semiempirical models nonlocal exchange operators and functionals of the kinetic
that employ correlated wave functions. Typically, these energy density (hybrid meta DFT).
methods involve carrying out the calculation at more than ~ Some of the most useful hybrid DFT functionals, based
one level (“level’= electron correlation method plus one- on nonlocal exchange and on the density and magnitude of
electron basis set), and there are several successful multileveine local gradient of the density, are the B3LYP,
methods such as the scaling-all correlation (SAC) methdd, mPW1PW9127 MPW1K 128 PBE1PBEL29.130gnd B97-231
the complete basis set (CBS) meth883% the multi- functionals. Successful hybrid meta DFT methods in-
coefficient correlation methods (MCCN#}P6-97:10+105 includ- clude B1B956132 TPSShL25 BB1K,132133 MPW1B95134
ing multi-coefficient Gaussian-B;'%® scaled Gaussian-3 MPWB1K 34 BMK,¥ PW6B9536 PWB6K 3¢ and
(G3S)106107scaled and extended Gaussian-3 (G3%9%he MO05-2X 137 DFT calculations employing the above func-
balanced multi-coefficient coupled cluster singles and doublestionals with basis sets such as 6+3%(d,p) and MG3 can
method” (BMC—CCSD), multi-coefficient Gaussian‘Z2 be very useful for calculating geometries of stationary points
(MCG2), the original Gaussian-2 (G2 and Gaussian-3  (saddle point$8and equilibrium geometries of reactants and
(G3>107 methods, and the Weizmann-1 (W1) and Weiz- products) at which more accurate energetic calculations (such
mann-2 (W2) methods® These methods use different as extrapolated CCSD(T) or MCCM calculations) may be
schemes and different empirical data to extrapolate to full carried out. Such DFT calculations can also be very useful
electron correlation and an infinite basis set. Methods for calculating vibrational frequencies of large molecules and
employing lower (and hence more affordable) le¥&§1°11%  gaddle points. One advantage of DFT methods is that one
may be especially well suited to kinetics applications; these can obtain reliable results with smaller basis sets than are
are sometimes called reduced-order methods. A review isrequired for reliable WFT calculations.
availablet* Another encouraging approach is the doubly hybrid DFT
As an example of high-level calculations applied to a method!*® which is a combination of SAC and hybrid or
difficult case, Table 1 compares the transition state geom- hybrid meta DFT. A problem with DFT-type methods is that
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they are not systematically improvable, although the predic- Hessian (again after excluding the six zero translations and
tions of DFT can be systematically improved by combining rotations). Saddle points withh > 1 are also called hilltops.

them with successively higher levels of MCCMS&.Fur- The most important saddle points are the first-order saddle
thermore, over time the density functionals have been points, for which only one eigenvalue is negative. The
improved by better parametrizations. eigenvectors of the Hessian matrix at a stationary point are

Because the stationary points are often used to charactercalled normal coordinaté4?15A first-order saddle-point is
ize the general features of a PES, algorithms for optimizing a minimum of the PES with respect taN3— 7 normal
stationary points are very important. These have recently vibrational coordinates, but a maximum with respect to the
been reviewed*! Methods for finding reaction paths are also other one.

important, and the most commonly used methods require that  For a simple barrier reaction, there is only one first-order
one first find a saddle point. More recently, nudged elastic saddle-point which is a maximum with respect to this
band methods have been developed that can compute areaction coordinate” of the process. This saddle point is
reaction path without first finding a saddle poift:*4¢ commonly called a transition state, and the potential energy
Almost all density functionals involve some empirical  at this geometry minus the potential energy of the equilibrium
elements and should not be called ab initio; some workers reactants is the classical barrier height of the reaction, which,
call them “first principles” methods, although the precise as discussed above, is a zero-order approximation to the
boundary between first principles and other principles is not activation energy in the Arrhenius equation. Therefore, a

clear. _ _ . good PES should have chemical accuracy at least at the
In summary, a wide variety of quantum chemical methods stationary points.

can allow us to obtain potential energy surfaces with high
accuracy, the limitation being the size of the system, although
the DFT-type methods can be applied to fairly big systems.
Trajectory simulations require knowledge of the PES over on the valence bond method for the H H, exchange
broad ranges of configuration space. More limited PES reactiont>?and this became the basis of the London-Eyring-

information is generally required for TST calculations, but Polanvi 53 . : 155
LY . . X yi (LEP)!53London-Eyring-Polanyi-Sato (LEPSY:
the amount of required information does increase with the " o\ e - EPES.257 potential energy surface fitting

sophistication of the TST method. Various methods have g noigns The extended-LEPS model has three adjustable

been dte\(/jellz?ggd t_?hotﬁta;n art] accurattei[. reprlesf(fenttat::\())n .Of theparameters (called the Sato parameters) that allow one to fit
compute Wi e least computational etfort. ReVIEWS ¢ |5cation of the potential energy barrier and its height.

1 i 48
o_fPESts for_reacgv? s;t/_stlems are availablé;“but progress T yind of PES, although historically very important,
since hen IS substantial.. . . cannot represent most aterdiatom reactions accurately due
_Ingeneral, the first step is to locate all the stationary points y, s ek of flexibility,*>8 but it is still frequently useful for
important for the reaction. A particular geometry is a providing insight into reaction mechanisms. Examples are

stationary point of the PES if the first derivatives of the provided by recent studies of product energy release in the
potential (gradient) with respect to all the nuclear coordinates |} | g, — H, + Br reactiod®® and vibrationally inelastic

The simplest bimolecular reactions are atodiatom
reactions. The first quantum mechanical model for a reactive
PES was derived for this kind of system by Londéthased

are zero and reactive probabilities for the N and, Mlegenerate
VR) rearrangement (exchange reactiéiq).s!
SR 0 (2.3.3) In current practice, due to the high accuracy that can be

obtained from electronic structure calculations, the strategies

In other words, all the forces on the atoms in the molecule Used to construct polyatomic PESs are usually based on
are null. The nature of Stationary points is determined by electronic §tl’ucture C_alCUlauonS._The mOSt Stralghtfqrward
the eigenvalues of the Hessian matrix, which is the matrix Procedure is called direct dynamit$:*" Direct dynamics
of second derivatives with respect to nuclear coordinates.is defined as “the calculation of rates or other dynamical
The stationary points are classified as minima, saddle points,0bservables directly from electronic structure information,
and hilltops. without the intermediacy of fitting the electronic energies
A geometry is a minimum (also called an equilibrium in the form of a potential energy functiof®* This is some-
structure) when B — 6 eigenvalues of the Hessian matrix times dubbed “on the fly” dynamics because every time the
are positive for a system withl atoms. The number of  dynamics algorithm requires an energy, gradient, or Hessian,
Cartesian coordinates iS\3we exclude the six eigenvalues it is calculated “on the fly” by electronic structure methods.
that correspond to overall translation and rotation. For linear A difficulty, though, is that chemical accuracy requires high
structures, there are On|y two rotational degrees of freedomlevels of electronic structure theory, and even for very small
so N — 6 and N — 7 become Bl — 5 and N — 6, systems high levels of electronic structure theory are
respectively. The PES will usually (the major exception being €xpensive in terms of computer time. The cost is higher for
radical-radical reactions) have van der Waals minima trajectory calculayons than for varlat|onal transition state
formed by intermolecular attraction before and/or after the theory, and for this reason early direct dynamics trajectory
collision, and in addition it sometimes has deeper minima calculations were based on neglect-of-differential-overlap
due to chemical bonding; these are called wells. For nearly @pproximation¥? or the Hartree-Fock approximatiotf®17°
thermoneutral reactions, one expects van der Waals minima@nd were limited to ensembles of short-time trajectories.
for both reactants and products, but for very exothermic A recent example of a medium-level ab initio direct
reactions the reactants may come together without a transitiondynamics calculation on a bimolecular reaction is provided
state and without a reactant van der Waals complex. by a recent calculation on the gas-phase €ICHzCI S\2
When one says saddle point with no modifier, one usually reactiont’* Although the level of theory chosen, MP2/
means first-order saddle point. Awth-order saddle pointin  6-31G(d), does not usually provide chemical accuracy for
the PES is a geometry with negative eigenvalues of the either barrier heights or anion thermochemistry (it does better
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for a degenerate rearrangement like- G+ CH;Cl), the Table 3. Mean Signed Errors (kcal/mol) of Several Electronic
trajectories required 92 h of computer time even with a step Structure Levels
size large enough to allow energy nonconservation up to 0.6 level AEG EA13 BH6 HAT12 NS16
kcal/mol. Such high costs are often reflected in sparse yip2/6.31G(d) —80 275 6.8 120 -22
sampling to keep the total effort affordable. In the case at mMp2/6-31-G(d) -82 102 66 121 1.1
hand, only three bimolecular collisions were calculated. Also MP2/6-31G(d,p) -51 99 55 126 1.1
at the QCT/MP2 level, Liu et dF2 studied the zero-point ~ MP2/6-31G(d,2p) -43 95 40 120 1.0
MP2/6-3H+G(d,p) -53 99 54 112 1.1

energy effect on quaswlassmgl trajectories for the blr_nql_ecular MP2/6-311G(d.p) 50 102 46 126 33
reaction of forr_naldehyde cation W|th2DAno.ther possibility MP2/6-311+G(2df2pd) —0.7 47 33 111 0.6
is to use density functional theory which, in general, can be sac-mp2/6-31G(d) —10 243 52 115 -36

quite accurate, or higher-level correlation methods. For SAC-MP2/6-3%-G(d,p) —0.5 72 42 121 0.3
instance, Camden et ¥E*"°carried out B3LYP/6-31G(d,p) = SAC-MP2/6-3%G(d,2p) —-03 7.2 27 115 0.3

: : : B3LYP/6-31+G(d,p) -15 -25 -50 -88 -36
collaons b O grec mams sy oo, GERASCD T e g2 50 8 S
: y using M05—2X/6-31+G(d,p) —14 -01 -06 11 —06

SAC-MP22method, which generally provides more accurate pj05—2x/MG3S
energies than the MP2 method. The scaling factor of SAC
was obtained by minimizing the differences between this ba
method and a coupled-cluster method.

For the purpose of evaluating cost/accuracy quotients of
various electronic structure levels that might in principle be also less accurate than MO2X, and it systematically
used for direct dynamics calculations, Zhao and one of the underestimates barrier heights. Boese et al. have com-
authord”” applied several levels of electronic structure theory mentedi®® “Very often, because of sheer user inertia, first-
to five relevant databases, and the results are summarizedeneration functionals are applied rather than the more

in Table 2. The table shows mean unsigned errors (i.e., mearAccurate second-generation functionals.” _
When high-level direct dynamics is not feasible, high-level

0.0 05 —-04 12 -08

2 The mean unsigned error for atomization energies is on a per bond
sis.

Table 2. Mean Unsigned Errors (kcal/mol) and Costs (relative electronic structure calculations can still be used in various

units) of Several Electronic Structure Levels other ways. For example, they can be used (i) as data for
level AEG EA13 BH6 HAT12 NS16 cost “fitting” or “interpolation” to a given analytical function or

MP2/6-31G(d) 80 275 68 124 80 10 (ii) as data for parametrizing lower level electronic structure

methods, which can then be used to perform the direct

MP2/6-3HG(d) 82 102 66 125 23 14 _ - ) m )
MP2/6-3+G(d,p) 51 100 55 126 2.2 19 dynamics calculations. We will return to case (ii) in the final
MP2/6-3H-G(d,2p) 43 96 40 120 22 28 two paragraphs of this section; next, though, we consider
MP2lbaLE 10(p S0 102 45 126 33 a4 Scveral approaches for case ().

MP2/6-311+G(2df,2pd) 15 4.8 33 11.1 06 3338 In case (i), we say that the analytical function “fits” the
SAC-MP2/6-31G(d) 41 243 52 133 89 15 abinitio data when the potential obtained by the function
SAC-MP2/6-3%#G(d,p) 21 7.8 42 121 29 28 does not necessarily match the ab initio data and that it
SAC-MP2/6-3%-G(d,2p) 16 78 27 115 28 39 “interpolates” when it does match at the data poifits.
Egtig;&gﬁgﬂd’p) é? g% i-‘; g-g gg 131’% A fitting (or interpolation) method is called global when
MO5—2X/6-31+G(d,p) 14 30 16 5 1 13 Fhe resyltmg PES is fit for all accessible ranges qf the
MO5—2X/MG3S 7 20 1.4 20 15 15.6 Interesting coordinates. One can also construct semiglobal

@ The mean unsigned error for atomization energies is on a per bond and local fits. The terms “global” and *local” will be used
basis.” The cost for each method is the computer time for a single- in the following paragraphs though to distinguish different

point gradient calculation at a generalized transition state of the OH Walys to interpolate. A global interpolant is a single function
+ CHgF S\2 reaction divided by the computer time for the same that covers all the regions of the potential that are relevant
calculation at the MP2/6-31G(d) level with the same computer program tg the dynamics and that is determined using all the data. In
and same computer, averaged over two computers (IBM Powerd and ., hrast an interpolation method is called local when the
SG ftanium 2). potential at a given point is determined only by the ab initio
points that are in its vicinity. Especially for interpolation,
absolute deviations from best estimates) for five databasesthe distinction between these kinds of fits and interpolations
AEG6 for atomization energies of neutral main-group mol- is not, however, as clear-cut as it might first seem because
eculest’® EA13 for electron affinities of atoms and small in all methods the interpolation or fit is a stronger function
molecules?* BH6 for barrier heights of bimolecular hydrogen-  of nearby data than far away data, and as the dependence
atom transfer reactiod€® HAT12 for barrier heights of  on distance away becomes steeper, a method becomes more
bimolecular neutral heavy-atom transfer reactibfisand local. In recent years, the increasing accuracy of WFT
NS16 for barrier heights of bimolecular anionic nucleophilic calculations for small systems has been responsible for the
substitution reactionS? Table 3 shows mean signed errors appearance of many interpolation algoritht#s257
for the same five databases. Table 2 also includes relative In general, when a number of scattered ab initio points
costs (in computer processor time) for evaluating the energy are fitted to an analytical function, the method is global. On
of a typical transition state configuration by each of the the other hand, methods that interpolate between elec-
methods. Tables 2 and 3 show that MP2 calculations, tronic structure points may be global (polynomi#fs252
although widely employed for direct dynamics, are not splines!®2183.187.237.258259 reproducing kernel Hilbert
reliable for kinetics because they systematically overestimatespace!???17:226or Shepard interpolatiéff) or local.
barrier heights. SAC methods give improved accuracy but The first type of PESs used for reaction dynamics were
are still not as accurate as the best DFT method, MDX%. analytical global functions (for instance, the extended LEPS
The older, but more popular B3LYP density functional is function mentioned above), often with parameters that were
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fit to available spectroscopic or thermochemical data (such Varandas and co-workers have pioneered a version of the
as bond energies), dynamics data (such as barrier heightBE method, called the double many-body expansion
inferred from rate constants), electronic structure data, or (DMBE) method?’#278 in which the interaction energy is
some combination. Sometimes the early PESs had qualitativedivided into two independent expressions that are called
flaws” For example, LEPS functions do not include Hartree-Fock and dynamical correlation terms, respectively.
dispersion interactions, and often the van der Waals well is This method has the advantage that the functional forms of
missing or is qualitatively inaccurate. It has been pointed the two contributions can be different and that each term
out that a reactive surface should have a qualitatively correctcan be fitted independently to different ab initio levels. A
well in about the right place so that the repulsive interaction summary of the application of DMBE to four-atom bimo-
energy decreases to about the right value at about the rightiecular reactions has been given by Vararida®aniagua
place?®! The width of the energy barrier depends on the and co-workers developed a similar method, but in this case
location of van der Waals well, and thus the correct calcu- the polynomial expressions for the two-body and three-body
lation of the tunneling probabilities, especially at low energy, term$79280can be extended in a systematic way to larger
is sensitive to the quality of modeling this featdfg?263 systemg8! Recently, Hayes et &#2 have used this method
Over the years, several new methods have been developetp fit 3230 ab initio geometries to study thetFHCl — HF
for the global representation of a PES, especially for atom + Cl reaction.
diatom reactions. For some simple reactions, like thé-H Some global fitting methods, mainly for aterdiatom
H, bimolecular reaction, there are several PESs, which havereactions, are based on Morse-type potentials. Wall and
been recently reviewed by Aoiz et®&f. The most accurate  porte?®3 used a rotating Morse (RM) function to construct
H + H; potential energy surface has been used for convergedihe potential energy surface for collinear atodiatom A
quantum mechanical dynamics calculations of the rate + Bc — AB + C reactions, and this was used for the first
constant® Below, we briefly describe some of the general  semiquantitative fit to the PES of the collinear H H,
techniques to build global PES from scattered electronic yeaction?84 Bowman and Kuppermad# improved the RM
structure calculations. model by performing a cubic spline interpolation of the
The diatomics-in-molecules (DIM) methdéF 26" a form Morse parameters along the rotating angle. This approach
of semiempirical valence bond theory, allows one to build a is called rotated Morse-splines (RMS) method. Wright and
Hamiltonian for a polyatomic system based on information Gray?®¢ extended its applicability by including not only the
about the diatomic fragments. It relates the Hamiltonian swing angle but also the bond angle to take into account
matrix elements of the polyatomic system to those of its bent geometries. This functional form has been used to model
diatomic subsystems, for which matrix elements depend onthe PES of some atordiatom system&7-291 Garrett et af%2
a single interatomic distance. The DIM representation has combined the RM method with the bond-energy-bond-order
been used, for instance, to study thé@)(+ H, — OH + (BEBOY* method for the CH H, system. Related to the
H bimolecular reactio®®2*The DIM method reducesto a RMS approach are the rotated bond order (ROBT)nd
LEPS-type potential for three-body systems with one active the largest-angle generalization of rotating bond order
s electron on each cent&?27° (LAGROBO)!%8201methods. The bond-order (BO) for two
In the many-body expansion (MB®} method, the  atomsnj is given by®
potential for a polyatomic system &f atoms is given by a
sum of terms corresponding to atoms, its diatomic sub- n. = exp[—f;(R. — R?)] (2.3.4)
systems, triatomic subsystems, tetra-atomic subsystems, etc. ! e
For instance, for a tetratomic system ABCD, there are four . .
monatomic terms,\/(Al), \/(Bl), V&, and \/(Dl), six diatomic Whe{%R‘j and I:2'? arle thg. internuclear d|_staince ?;]d the
terms of the type AB, AC, AD, BC, BD, and CD, four equilibrium internuclear distance, respectively, ghds a

triatomic terms of the type ABC, ABD, ACD, and BCD and parameter related to the harmonic frequency, reduced
one four-body term. The monatomic terms are simply the mass, and dissociation energy of the diatom. In the ROBO

energies of the separated atoms, the two-body terms arénethOd’ as "! the RMS methqdz the potential is written asa
potentials for diatomics, and the higher order terms include Slljm of a r?dlaltfuncttlon m_:_JrI]tlplll_epc\ijggggr;gulatyr fur:cpon
interaction potentials among three and four atoms, respec—p us rindm erac Icfmtherrgosg functi ¢ u?r:: 'Og?f IS a:
tively. Varandas et &7! used MBE potentials together with ~ W€'9Nt€d sum of the unctions for the difieren

the DIM approach to fit the ground and first excited state of rearrangen&e;; ?hannfels Oft the sy::‘tem §r3h_f°r at:]nadtomlc
the water molecule. Their PES also includes a function that SYStem an or a four-atom system). This method was

allows switching between the two electronic states. Liu et '€cently applied to the OH HCI reactiozr;iw For systems
al22have used the MBE method to study the recombination With more than E)ur atoms, Galuamet ﬁl' developed a”h g
reaction between hydroxyl radicals and nitrogen dioxide to @PProximate method based partly on the LAGROBO metho
form nitric acid. The MBE method has the advantage that &"d partly on the MBE method, which they applied to build
the terms can be used for any system containing the sam he PES for the hydrogen abstraction reaction from methane
fragments. For instance, if an MBE potential for water is PY chlorine. Duin et a#*proposed an extension of molecular

available, it provides several of the terms in a potential for Mechanics to reactive systems by using bond orders.

the reaction HOt+ H; — H;O + H, including all the one- Related to the above methods is the reduced dimension-
body and two-body terms and one of the three-body terms.ality (RD) approach developed by Clary and co-work-
Mielke, Garrett, and Peters8A showed for the H+ H, erg13.231234.245.25%g study hydrogen abstraction reactions.

reaction that the many-body decomposition is also useful These reactions are all of the type-Bl + A — D + H—A

for extrapolation of ab initio data. Lakin et #° and Troya (D and A are the donor and acceptor atoms, respectively,
et al?®> applied the MBE method to the O CO and F+ and H is hydrogen) and the RD potential is constructed from
CH, reactions, respectively. a sum of two 2D-Morse functions, which are given in
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hyperspherical coordinates. The objective is to obtain a PES

for evaluating the thermal rate constants by conventional

transition state theory but calculating the cumulative reaction

probability of this two-dimensional (2D) reduced Hamilto-
nian by a quantum mechanical method.

Other techniques make use of high-order polynomials to
fit the global PES. Millam et &% developed a fitting method
based on a fifth-order polynomial function. It has the

Fernandez-Ramos et al.

M1 M2 Mn

N
zz...zail,iz,...iNJUqi(xj‘i,xj) (2.3.6)

1 I2 IN

N _
W )(xl,xz,..xN) =

where X = (X1, Xp,..., Xy) IS the set ofN independent
coordinatesM;, My, ..., My are the numbers of ab initio
points along each coordinatg(xi,x) is a one-dimensional
(1D) reproducing kernel for each variablg, and o, _j,,

advantage that can be used to run trajectories with largerare coefficients that can be obtained by solving a set of linear

step sizes. Medvedev, Harding, and GPéycalculated
~79 000 ab initio points to construct a global analytic
function based on a sixth-order polynomial plus three
additional polynomial functions to reproduce the £H
minimum and the asymptotes of the # CHEIT) — H +
CHx(X®B,) bimolecular reaction. Bowman and co-work-
erg38242241.2531sed an approach in which the ab initio data
are globally fitted to a permutational symmetry invariant
polynomial. The potential is given by

V=p(x + Zqi,j(x)yi,j (2.3.5)

1<]

where p(x) and gij(x) are polynomials, angi; = [R;]™*
exp(—R;j). The polynomials are built in a way that ensures
invariance under permutation of like nuclei. The method has

been tested in the construction of the potential energy

surfaces for OfP) + CsHz and H+ CH, reactiong#7:252

respectively. For the latter, the authors calculated a large

number of ab initio points, which they fitted to the above

expression to study the abstraction and exchange reaction

by running quasiclassical trajectories.

Rogers at at?® compared a potential made by combining
the extended LEPS function with two high-order polynomials
to an RMS potential for the GR) + H, reaction. They

obtained excellent accuracy (about 0.3 kcal/mol) between

the PESs by adding virtual points and localized Gaussians
which eliminated some unphysical features of the original
potentials.

All the global fitting methods described above, with the
exception of the MS methods, require the optimization of

adjustable parameters. Those parameters are usually obtained

by performing a least squares (L%)'8¢fitting of electronic

structure data, which is not always easy. In contrast, spline

functiong®2.183.258.259.2%1nterpolate the data instead of fitting
them. A difficulty is that splines need a fair amount of data
over a regular grid, and their application has been limited to
two or three dimensions. Recently, Rheinecker, Xie, and
Bowmart®” carried out dynamics calculations of the®t

+ H,0 proton-transfer reaction in reduced dimensionality.

Those authors considered three coordinates, i.e., those of the
donor, the acceptor, and the transferred particle, which were

fitted to a three-dimensional (3D) spline.

The reproducing kernel Hilbert space (RKHS)method,
like spline interpolation, is an interpolation method, but
with the advantage that some constraints, like smoothnes
and good asymptotic behavior, are explicitly taken into
account. On the other hand, the number of ab initio points
needed to do the interpolation grows exponentially with the

dimensions of the system and the method works best if the
data are provided over a rectangular grid. This approach is

usually combined with the MBE method and each of the
many-body expansion terms are given by RKHS interpola-
tion, i.e., theN-body term of the expansion for a regular
grid is given by

equationg!® The RKHS method has been applied to several
triatomic systems as for instance the’?D) + H,, C(D) +

H, and OfP) + HCI bimolecular reactions®??1.227Bala-
banov et aP* also applied this interpolation method to
several reactive channels of the ground-state of the KHgBr
system, i.e., abstraction of a bromine atom (HgBBr —

Hg + Bry), exchange [HgBr(1x+ Br(2) — HgBr(2) +
Br(1)], and insertion (HgBr+ Br — HgBr,) reactions,
respectively. Recently, Ho and RaB3#&introduced a new
formulation of the RKHS method called reproducing kernel
Hilbert space high dimensional model representation (RKHS
HDMR), which allows one to reduce multidimensional
integrations to independent lower dimensional problems. So
far it has been tested for the'D{ + H; reaction??® although

in principle it is easier to extend to higher dimensional
systems than the original RKHS method.

Analytic potentials for reactive degrees of freedom can
be combined with nonreactive force fields (molecular
mechanics) to treat more complex reactiéng4241,244,29700
(as discussed further below).

Next we turn our attention to local methods based on
interpolation and specifically those based on Shepard
interpolation?>%269 which was pioneered by Ischtwan
and Collinst®2181n their work, electronic structure meth-
ods are used to calculate Hessians at many points,

typically selected on the basis of trajectory calcu-
|ati0nSlQO,194—197,199,200,204,207,209,212,218,222,232,246,248,%(1 the

S

'PES is represented by a weighted average of the Taylor series

T; about each electronic structure point where a Hessian is
calculated:

N
V=) W(R)Ti(R)

(2.3.7)

Ti is a Taylor series expansion around pditruncated to
second order, and is the number of points where a Taylor
series is available. The normalized weighting factr
weights the contribution of the Taylor expansion abBut
and is given by

u(R)

N

];Uj(R)

W(R) = (2.3.8)

*pata points that have a geometry closeRidave a larger

weight than those with very different geometries. This is
achieved by the weighting function

1

T Z(R) - ZR)® (259)

Y

wherep is a parameter that determines how quickly the
weighting function drops off, and is a suitable function of
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R. In particular, the PES is built in coordinates that are gradients, and Hessians, and for a given poitiite poten-
reciprocals of the internal coordinates. The normalized tials are expanded in Taylor's seri®%R;i), Vi1(R;i), and
weighting factor should provide a smooth interpolation V.,(R;i), to second order about the(i) geometry. Each
between nearby points even when they are far away from Hessian generates a Taylor's serie§/g{R) about another
the geometry of interest. Alternative weighting functions can point. These series are joined by Shepard interpolation, and
also be considered!?'1The Shepard interpolation method the new resonance integm(fz(R), is given by
for generating PESs for trajectory calculations is featured in
a recent review?° n

One of the advantages of this method and of Shepard VfZ(R) = Zvvi(R)V’lz(R;i) (2.3.13)
interpolation in general is that regions that are irrelevant to i=
the dynamics may be ignored and new electronic structure ) o i Do
points may be readily incorporated to improve the PES. Yagi Where wi(R) is a weighting function, and/;,(Ri) is a
et alZ6and Oyanagy et &p*have used Shepard interpolation modlfle_d quadratic form_ obtalnepl frpm the Tay!or series
based on fourth-order Taylor expansion to obtain highly €xPansion about the pointThe weighting function is taken
accurate PESs. Very recentf§the Shepard method has been to be as smooth as possible consistent with conditions

extended to study diabatic potential energy surfaces, which"€duired for eq 2.3.13 to be a true interpolant of energies,
are discussed later in this section and also in Section 3.2.9radients, and Hessians. The weighting function is usually

Thompson and Collii€ also developed techniques called & function of the bond-forming and bonq-breaking distz_ances.
“rms sampling” and K-weight” to successively improve and The MCMM method uses redundant internal coordinates

“grow” the PES. because they have the advantage of being rotationally

The Shepard interpolation method needs not only the invariant. As is Collins’s method, the MCMM method is
energy but also the gradient and the Hessian at every datayStematically improvable, and we can sample only the parts
point. One way to overcome some of the high computational ©f the PES relevant to the dynamics. , ,
requirements of the method is to combine Shepard interpola- A key advantage of the MCMM method is that it makes
tion with an interpolating moving least-squares method to US€ of molecular mechanics and therefore can de_al with quite
evaluate the gradients and Hessians. The combined IMLS//arge systems. The use of molecular mechanics in a valence
Shepard procedure has been applied to some-attiatom bond context for representing potential energy surfaces was
reactions such as the LiH- H and OfD) + H, reac- suggested in various ways in pioneering studies by Coulson
tions2152240ther author¥e229.236.239.240. 25 ave simply used and Danielssof? Raff2%7 Warshel and Weis¥#:299.308,309

the IMLS method to interpolate PESs, because Shepard@nd other®0302510315and itis useful to add some perspective
interpolation can be considered a zero-degree IMLS and aO" these approaches. First of all, as emphasized recently by
first-degree IMLS solves the “flat-spot” problem. Shurki and Crowri}* incorporating valence-bond configu-

Another method that makes use of Shepard interpola- fation-mixing elements in a model allows one to work
tion is multiconfiguration molecular mechanics method e>gpI|C|tIyW|th thg pictorial resonance structures we usually
(MCMM). 210214241 This method is based on semiempirical think of as chemists” and thereby “enables us to understand

valence bond theoripl158.181265270274,297307 and the PES in detail the mechanism of barrier formation by following

is built starting with a molecular mechanics potential the energies of the VB structures and the resulting mixing
valid in the reactant-valley well and a molecular mechanics ©f States along the reaction coordinates.” Thus, valence bond
potential V,, valid in the product-valley well. The Bora theory is a powerful tool for obtaining insight. Furthermore,

Oppenheimer potential energy is represented at any geometryt Provides very useful nonpairwise-additive functional forms
R as the lowest eigenvalue of the 2 2 electronically for fitting PESs since it naturally builds in the saddle point
diabatic matrixV structure of chemical reactions. Indeed, as mentioned above,

there is a long history of this kind of usage of valence bond

V34(R) Vio(R) theory151158,181,265270,274,302304 agpecially for small systems.
“V(R) V,(R) (2.3.10) Espinosa-Garcia and co-work#&fs32° have used LEPS-
12 22 type potential energy surfaces augmented by molecular

. . . I mechanics terms to study polyatomic systems, mainly
In this context, a diabatic potential is one that corresponds abstraction reactions of the type GH X — CHs + HX

to a particular bonding arrangement or valence bond and C%Y -+ H — products, where X, Y= F, CI, Br, or I.

structure. ]
The lowest eigenvalue of eq 2.3.10 is These surfaces are formulated as a sum of three terms:
+ Vit VOp (2.3.14)

V=YV,

str

1
V(R) = 5{(Vis(R) + Voo(R)) = [(Vas(R) — Voo R))* + _ _—
where Vg is a LEPS-type semiempirical valence bond

4V12(R)2] 1/2} (2.3.11) potential, V.4 is the potential for harmonic valence bending,
andVyp is the out-of-plane bending term.
where Vi5(R) is called the resonance energy function or A natural way to extend such treatments to larger systems
resonance integral. An estimate \6f,(R) is obtained from is to write?97:300
the scheme proposed by Chang and M#REC7 In their
approach, the resonance integral is expressed as V= VCB + V,Ef, (2.3.15)

V,,(R)? = [Vi4(R) — V(R)][V,«R) — V(R)] (2.3.12) whereV{; is a valence bond potential energy function for
the reactive part of the subsystem where bond rearrangement
In the MCMM method, this equation is used for each of occurs (subsystem A, as indicated in the superscifat)s
the n ab initio points, for which we know the energy, a nonreactive (N) potential function of the tygewidely
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used to treat molecular vibrations and vibrational spectros- quadratic terms in the multidimensional Gaussian are posi-
copy, and the nonreactive subsystem is labeled B. If we usetive, whereas they assumed that they are all negative.

a two-state valence model, eq 2.3.10 can be written as The MCMM method presented above also has the form
of eq 2.3.18, and it provides a systematic way to parametrize

_[VAg Vap the EVB method. The use of MM in this method helps in

V=minei a* A7|+Vx (2.3.16) two ways. First of all, it makes it possible to interpolate,

RP PP rather tharV; Vi, is much smoother. Second, the molecular
mechanics terms describe the variation of the potential as a
function of the spectator degrees of freedom quite well, and
so one does not need to add Hessian points with various
values of the spectator coordinates to incorporate that
variation. It is possible to save further computational expense

by using electronic structure theory to calculate partial

Hessians involving only the most critical degrees of free-

dom?#! Recently, the MCMM method has also been applied

or

Vas + VB VA
V=minei\{ RR N TRP (2.3.17)

A
Vrp Vep+ Vﬁ

where mineiw denotes the minimum eigenvalue of matrix
V. The subscripts refer to reactant (R) and product (P). : : - : ooo
Nonreactive potential functions are usually written as a sum E?atr?sef ;arrgaeélt?;: iiﬁﬂlgs\/t/);tlgp?r?r;i’ggtldﬁ and to proton-

of (often harmonic) potentials for individual stretches, bends, '

torsions, and other nonbonded interactions, and such potentia] 1€ MCMM method, although based completely on ab
functions were originally obtained from vibrational spec- nitio elgctronlc structure calculanons,. is nota_s,tra|ghtd[rec'g—
troscopy?2! They were also used to rationalize the rate of dynamics method because an algorithm for mter_polatlpn is
bimolecular reaction®2323 More recently, such potential _ne_eded to c_alculate geometries th_at are not available in the
energy functions have been widely parametrized in a wa !nmal set pf input data. An alternative approach that avmds
designed to be transferable for the prediction of structure interpolation is the hybrid VB/MM method of Shurki and
and conformational energy, with less emphasis on vibrational Crown?®“ This method combines molecular mechanics for
spectra??4-3% such potential functions are usually called the diagonal elements Wllth a “standard” ab initio vale.nge
molecular mechanics (MM). Since an MM potential function Pond package for the off-diagonal elements, thereby avoiding

corresponds to a definite bonding arrangement, it can beParametrization as well as interpolation. An empirical
associated with a single valence bond configuration. combined valence bond molecular mechanics (CVBMM)

Warshel and Weig& 292,383 roposed a method that is Method has also been proposétin this method, the VB

equivalent to replacing the diagonal elements in eq 2.3.17 Part is an extension of the semiempirical VB methods that
by molecular mechanics potentialg*f) for the reactants ~ Were originally developed for small systems.
(subscript R) and products (subscript P) of the combined AB  As discussed above, another alternative is to avoid both
system: MM and interpolation and to use straight direct dynamics
to build the PES, that is, to calculate “on the fly” every
VAB A energy, gradient, or Hessian needed for the dynamics
V=mineij 5 &F (2.3.18) calculation. Unfortunately, this cannot be done economically
Vre Vr if the level of ab initio theory employed includes much of
the electronic correlation and involves large basis sets. One
The idea that potential energy functions for large systems possibility is to use a neural network for function approxima-
can be approximated by mixing molecular mechanics tion; this combine¥? electronic structure calculations with
potential functions is a powerful one. Warshel and Weiss sampling methods that make use of molecular dynamics
call this the empirical valence bond method (EVB). Although calculations to sample important parts of the PES in a similar
this name has now become well established, it continues toway to how they are used by Collins and co-work&rfor
cause confusion of the same type that would be engenderedshepard interpolations.

if a specific kind of semiempirical molecular orbital theory  another possibility is to do high level ab initio calculations
were designated empirical molecular orbital (EMO) theory. 4t the stationary points (reactants, products, and transition
To avoid confuspn of_ t_he generic and the specific, we use state) and try to find a lower-level method that provides
the phrase “semiempirical valence botfd'to refer to the  gimjlar energies and geometries. Sometimes it is possible to
generic class of empirical or semiempirical (these words find a low-level ab initio method that fulfills the requirement;
mean essentially the same thing) valence bond theories. however, if the system is relatively big even a low-level ab
Warshel and co-workers usually parametrizg, as a initio method can be impractical. A common approach is to
constant or a two-parameter function depending on one of use semiempirical molecular orbital theory instead of ab initio
the coordinates of subsystem A. This is not guaranteed toor DFT methods$31332As mentioned in Section 2.1, some
give the correct global behavior & but it is serviceable,  of the integrals evaluated in the ab initio methods are replaced
especially since “the main point of the EVB method is not by parameters in some of the semiempirical methods; in other
in its gas-phase surface but rather in its treatment of the semiempirical methods, the parameters are scaling factors
solvent.®® Other workers, however, have employed the or occur in additive terms. In any of these methods, the
formalism with more elaborate fitting metho#l8Chang and  parameters can be optimized in a general way against a broad
Miller 3% attempted to make the EVB form more systematic or representative database, or they can be modified to
by replacingVQP by V’QE and making a multidimensional reproduce the energetics, some frequencies (for instance the
Gaussian approximation ¥gp, and they claimed that their  imaginary frequency at the transition state), and/or some key
resulting expression for the potential energy reduces properlygeometric parameters important for a specific reaction or
to the appropriate limits for reactants and products, but it range of reactions. In general, these parameters are reaction
does not because approximately half the coefficients of the dependent, and therefore this produces a semiempirical
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method with specific reaction parameters (SRPs). This
approach is quite flexible, and since its introduction in

199144 many groups have used it to obtain potentials for
classical trajectories or to evaluate thermal rate con-
stantst’4175:333335 The use of genetic algorithms to optimize

the SRPs is especially powerfiif.337
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that divides reactants from products and that passes through
a saddle point orthogonal to its imaginary-frequency normal
mode, which is the reaction coordinate. [Looking ahead,
variational transition state theory will retain assumptions
(1—4) but improve on (5).]

The classical TST expression to evaluate thermal bimo-

An example of a reaction where various approaches maylecular rate constants®:34

be compared is H+ CH; — H, + CHs. A sequence of
successively improved semiempirical valence bond sur-
faceg!8297.338339%yentually led to the refined surface of
Espinosa-Garci&® which has been employed for several
approximate quantdf and quasiclassicdl173341 studies.
Some of the trajectory studig$ 173 were compared to direct
dynamics with B3LYP. Unfortunately, the Espinosa-Garcia
surface has a classical barrier height of only 12.9 kcal/mol,
whereas the current “best estimate” is 14.8 kcal/fdl;
B3LYP has a similar deficiency since it has a barrier of 9.4
kcal/mol, which is not surprising since Table 2 shows that
B3LYP systematically underestimates barrier heights for
hydrogen transfers. Direct dynamics calculations of rate
constants were carried out with multicoefficient correlation
methods with specific reaction parameters, in particular,
MCG3-SRP, which yielded the most accurate available
potential energy surface for any reaction with this many
atoms3*? Later quantum mechanical calculations with a fitted
ab initio surface gave similar resuf8. Another fitted ab
initio potential energy surface in good agreement with the
MCG3-SRP one has been published more recepily.

2.4. Rate Theory for Simple Barrier Reactions
2.4.1. Conventional Transition State Theory

The variation of a thermal rate constant with temperature
can be described phenomenologically in terms of the
Arrhenius equation (see eq 2.2.1), which contains the
activation energy as a key parameter. Transition state theor

and momenta) into a reactants region and a products regio
with a “dividing surface” normal to the reaction coordinate.
(Technically, we might say dividing hypersurface, but
“surface” is a less formal shorthand for “hypersurface.”) In
some cases, the reaction-coordinate definition and dividing-
surface definition depend only on atomic coordinates (not
on atomic coordinates and momenta), in which case the
dividing surface becomes a surface in coordinate space,
special case of a surface in phase space.

A number of implicit assumptions are needed to derive
the conventional TST expression, in particular (1) that the
Born—Oppenheimer approximation is valid; (2) that the

1 QLT

ph og(m

K(T) = exp(—AV) (2.4.1)

whereV* is the barrier height from reactants to the transition
state,Qé(‘D is the classical (C) partition function of the

transition state, and)?(n is the reactants classical parti-
tion function per unit volume. Conventional TST requires a
very limited knowledge of the PES, namely, the transition
state energy and the partition functions at the reactants and
transition state. Thus, conventional TST states that thermal
rate constants can be calculated by focusing exclusively on
the saddle point, and if we are only interested in the total
rate constant, what happens before or after is irrelevant.
TST also introduces the concept of “reaction coordinate”
and the assumption that motion along it can be separated
from all the other degrees of freedom. It has been recognized
since the early days of TST that the choice of the reaction
coordinate is crucial. Since the reaction coordinate is the
degree of freedom normal to the transition state, which is a
surface, a choice of transition state is equivalent to choosing
a reaction coordinate plus choosing the location of a surface
along this coordinate. In Section 2.4.2, we will consider
choosing the transition state that way. First though, it is useful
to comment on notation. When we choose the transition state
as normal to the imaginary frequency normal mode coordi-
nate of the saddle point structure and locate it so it cuts that
coordinate at the saddle point, we often call this the

X L >ONYconventional transition state. Any other choice is called a
also centers attention on the activation process. The transition

state divides phase space (the space of atomic coordinate
n

eneralized transition state. In variational transition state
eory, we will have a criterion for choosing the best of these
generalized transition states, and that is called the variational
transition state. Very often though, one just says transition
state, and the meaning (conventional, generalized, or varia-
tional) is supposed to be clear from the context.

Equation 2.4.1 can be reformulated in quasithermodynamic
terms by using the connection between the equilibrium
constant and the Gibbs standard free energy. Thus, we rewrite

aEq 24.1 as

KE(T) = /3—1h|<*m 2.4.2)

reactant molecules are distributed among their states inwhere K* is a quasiequilibrium constant for forming the

accordance with a MaxwetBoltzmann distribution (this is
called the local-equilibrium approximation; the word “local”

transition state; the “quasi” refers to the importdhdistinc-
tion that the transition state is not a true thermodynamic

is needed because reactants are not in equilibrium with species because it is missing one degree of freedom. (Recall
products); (3) that a dynamical bottleneck can be identified that a hypersurface, such as a transition state, has one less
such that once the reacting trajectories reach the dynamicaldegree of freedom than the volume in which it is embedded.)
bottleneck, they proceed to products without ever returning Then by analogy to true thermodynamic relations, we can
(and similarly any product trajectories that reach the dynami- write
cal bottleneck proceed straight to reactants without returning

to the bottleneck); (4) that quantum effects may be added 0 10
by replacing the classical partition functions that result from ﬁK exp[-AG™/RT]
the above assumptions by quantum mechanical partition

functions; and (5) that the dynamical bottleneck (transition Equation 2.4.3 provides the historical motivation for the
state) may be identified as a coordinate-space hypersurfacevidespread use of eq 2.2.3 and can be written as

1

K(T) = (2.4.3)
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associated with motion in any direction (which is why the
coordinates are called isoinertial), and so thieddmensional
motion of the many-atom system governed by the NES))

If we use a standard state of 1 atm and equate this to theis equivalent to the motion of a point mass \¢(R), where
Arrhenius equation, standard thermodynamic analysis R denotes the collection of tH& coordinates. An orthogonal

k(M) = ﬁ—1h|<° explAS"IR] exp[~AH"/RT] (2.4.4)

yields47:348 transformation of these coordinates provides new coordinates,
for example, mobile coordinaté®,that are also isoinertial.
AH"° = E,— 2RT (2.4.5) Isoinertial coordinates have many advantages, and they
will be used throughout this review. A trivial advantage is
and*3 that they make it easier to write down and derive many of

the dynamical equations. A more fundamental advantage is

K°e? that they allow a multiparticle generalization of concepts such
A= ( ph ) exp(A§'°/R) (2.4.6) as centrifugal forces; for example, the tendency of a bobsled
to veer off its minimum energy path toward the convex side
or of the path has an analogue for chemical reactions that may
be expressed quantitatively in terms of the curvature of the
AS° =R In(BhA/K®) — 2R (2.4.7) reaction path in isoinertial coordinat&3:364 Furthermore,

dividing surfaces orthogonal to the minimum-energy path
whereK? is the reciprocal of the concentration that corre- in isoinertial coordinates have been found to be very good

sponds to a pressure of 1 atm at temperaiure dividing surfaces for TSF¢®
. » Next, following previous presentatiod®;3** we derive
2.4.2. Variational Transition State Theory variational transition state theory for a system described by

Transition state theory can be derived from a dynamical classical mechanics. From a classical mechanical point of
approach by statistical mechanics. In the quasiequilibrium View, a reactive system & atoms can be fully described at
formulation given above, the emphasis is on the equilibrium & given timet by a @\-dimensional point¢,R) in phase
distribution in the dividing surface that separates reactantsspace and the Hamiltonian
from products and on the statistical character of the equi-
librium approximation, and the factor/Hi can be obtained H(p.R) = T(p) + V(R) (2.4.9)
from simple models of reaction coordinate motion. IN e gensitys(p,R) of phase points in the ensemble satisfies
contrast, in the dynamical formulation of the theory, TSTis e continuity equation
derived, including the ph factor, by a rigorous statistical
mechanical calculation of the flux through a phase-space or 0
coordinate-space dividing surface. In the latter approach, a_ft>+ Vv =0 (2.4.10)
developed by Horiut#° Wigner3*° and Keck51-3%2(see also
Pechukas®® Tucker and Truhlaf®* Garrett3®> and Garrett  wherev is the generalized velocity of a point in phase space
and Truhla#®), the TST rate constant is the one-way andV:is the generalized divergence operator.
equilibrium flux coefficient through the dividing surface. By following the flow of points between different regions
Then, the fundamental assumption of transition state theoryin phase space, it is possible to study the course of the
is that this one-way flux through the dividing surface equals chemical reaction in this ensemli3f8:352:35435¢irst consider
the net flux. This will be true if all trajectories that cross the a volume<2 in phase space corresponding to reactants. The
dividing surface in the direction of products originated at integration of eq 2.4.10 over this volume yields,
reactants and will not cross this surface again before leading
to products. Pechukas and Pollak argued convincingly that, _9 d™Nrp = j’ d™Nzv-pv (2.4.11)
in a classical world, conventional transition state theory is ot/ Q
accurate near the threshold of a chemical reac¢fio®®®

The motion of anN-atom system on a PES can be
described in terms off8atomic coordinates, or, in particular 3N
mass-scaled Cartesia_n coordinates. These cooro‘i?ﬂﬂas d®Ny = dp,dR (2.4.12)
the same as mass-weighted Cartesian coordiates with —
amass factor g 2 If S, for y = X, y, z, are the Cartesian
coordinates of atornwith respect to a fixed origin or with  The left-hand-side of eq 2.4.11 is the time derivative of the
respect to the center-of-mass of the system, the mass-scaledumber\R of reactant systems in the ensemble in the volume

where

coordinates are defined as Q, and so
1/2 dNR
R= (m) S 1=L.N y=xyz j=1.N B Jod™ev-pv (2.4.13)
“ (2.4.8)

. o _ _ Then the integral of eq 2.4.13 can be transformed into a
For a bimolecular reaction, it is sometimes convenient to surface integral using Gauss’ theorem, yielding

define the scaling magsas the reduced mass of the relative

motion of reactantsy = mamg/(ma + mg), wherema and dNR

me are the masses of the reactants A and B, respectively. T Td Jsdso(v-n) (2.4.14)
Alternatively, it is very popular to set equal to 1 amu. In

this system of coordinates the kinetic energy associated withwhere & is a differential element of area belonging to the
the nuclear motion is diagonal and has the same mass transition state surfacg§ andn is a unit vector orthogonal
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to the surfac&that points out of the volum®&. The surface F(T) F(MV

is a (N — 1)-dimensional hyperplane (the dividing surface) ke(T) = VIAIB] ~ NuN (2.4.22)
that separates reactants from products, and all the flux from ATB
the volumeQ2 passes through it. Therefore, eq 2.4.14 equals
the one-way fluxF, (the + sign indicates that the flux is
calculated in the forward direction, that is, from reactants to
products) through this hyperplane:

whereV is the volume, and the subscript on the left-hand
side reminds us that we are using classical mechanics here.
In the reactant region, the reactants are independent of each
other, and the Hamiltonian that describes them is separable
in the coordinates of A and B. Using this separability and
F,= f&ds,o(v-n) (2.4.15)  eq 2.4.19, we can write

_ 3n A 3n B
whereS; is the portion of the phase space dividing surface NANg = ph™*VO(T)hTEVD(T)  (2.4.23)

for which (v-n) > 0. A B . . .
Next rotate the axes so that one of tiérgw coordinates ~ Where®¢ and ®¢ are classical partition functions of both

is perpendicular to the dividing surface. This coordinate is réactants per unit volume. _
our reaction coordinate and will be labeled as the On the other hand, if we make the TST assumption and

remaining coordinates are callad= U, Up,..Us1, and their ~ replace F(T) by FCI(T, z) in eq 2.4.22 and define a
conjugate momenta are callegd. Since we are assuming generallzed transition-state “partition function” that has _the
here thatz is a rectilinear coordinate (an assumption that Potential energWre(z = z) as its zero of energy, we obtain
will be relaxed later in the review), the dividing surface is a

hyperplane. The value of at the dividing surface will be CI)GT(T z)= explVeez = Z*)]f BN-2,

denoted ag.. By construction: e VHEN-D

exp[—AH®(u,p,; z=z)] (2.4.24)

v-n=d—z=gz> 0 (2.4.16)
dt  u Then eq 2.4.22 becomes
wherep;, is the momentum conjugate 0By separating this 1 cpgT T,z)
coordinate and momentum from the rest, the one-way flux kgT(T,L) = —hﬁexp[—ﬂVRP(z= z)] (2.4.25)
is given by Ph oM@
P 8 It is useful to separate the overall translation from the
= fzzz*d T fo dpzp; (2.4.17) tphar':ition functions, since it is irrelevant. Taking into account
al

Now, if we assume that the internal degrees of freedom 2 \3/2
of the reactants are in thermal equilibrium, the density of tfans(T) (2zmy /i)
states corresponds to a Boltzmann distribution

(2.4.26)

where X is GT, A, or B, the ratio of all translational partition

p = py XpI=fH] (2.4.18) functions is

1 (hzﬁ)s/z
so that — =5 (2.4.27)
cDreI(T) 2‘7[/“
N? = Pofgd6NT exp[~H] (2.4.19) and the thermal rate constant for a bimolecular reaction can
be rewritten as

and the one-way flux through the dividing surface is given ( )
by 1 QE(T,

K'(T2) =g exp-fVrplz=2)] (2.4.28)

DY)

= po J'd™ "t exp[-pH"(u,p,; 2=

o P whereQg" is the partition function defined by
21 fy dp; ; expl-pp;124] (2:4.20)

DE(Tz) = PN (Tz)  (2.4.29)

The superscript GT indicates that the dividing surface at
is a generalized transition-state, amd= z. because the

integral is over the surface at this particular value.ofhe Ry B
integration overp, leads to the one-way flux through the Pe(T) = (I)rel(T)Qé(T)Qc(T) (2.4.30)
generalized transition-state at= z

and

We have presented the derivation of eq 2.4.28 because it
oT EN—2 oT is the central result of TST. Using standard statistical
FO(T.2) = pokeT [d™*z expl=BH"(u,p,; 2= 2.)] mechanical relation®736¢one can show that eq 2.4.28 is
(2.4.21) equivalent to eq 2.2.2 with(T) = 1. In classical mechanics
the TST rate constant would be the exact local-equilibrium
For a bimolecular reaction, the classical mechanical rate result if all the trajectories that cross the dividing surface in
constant is given in terms of the flux from reactants to the direction of products originated on the reactant side and,
products by having crossed once, never return. THEA(T, z) > F(T),
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and the TST rate constant provides an upper bound to thedividing surface must separate the reactant region of con-
true classical rate constant. The “quasiequilibrium hypoth- figuration space or phase space from the product region. Then
esis” assumed by Eyring in his formulation of TST is thus the classical mechanical CVT rate constant is given by
equivalent to the “nonrecrossing” condition, and it is exact

if all of the systems that cross the dividing surface in the oVt 1 QST(T,S= VT
direction of products do so only once. Transition state theory K¢ (T) = ﬂ_h R

is sometimes incorrectly categorized as a nondynamical o(T)
statistical theory. Actually, it is a statistical dynamical theory

in that the problem of evaluating the one-way flux through 14 hrqvide physical insight into this minimization process,

a dividing surface by running classical trajectories oiNa 3 e write eq 2.4.34 in a quasithermodynamic form like eq
dimensional potential energy surface is reduced to a local, 4 3 yielding

quasiequilibrium calculation.

exp[—BVyes(s”" )]

(2.4.34)

The next step is to find good practical methods for KHo
choosing the dividing surface so that the local one-way flux kS'(T,9) = —hexp[—AGgT'o(T,s)/R'I] (2.4.35)
equals, to a good approximation, the global net flux. The p

method for this that we discuss is the one proposed by Garrett,,
and Truhlas80-365369The dividing surface is perpendicular
to the minimum energy path (MEP) through isoinertial
coordinate spaces; this path®"tis also called the intrins#¢?
reaction path. The MEP is chosen as the path of steepest 9 6To

descent, starting at the transition state, in isoinertial coor- a_s[AGC AT |s=scvr =0 (2.4.36)
dinates. In general, the distance along the MEP is denoted

by s, with the saddle point a = 0, the reactants region  and therefore CVT is equivalent to a maximum free energy
corresponding ts < 0, and the products region correspond-  of activation criteriort2-360.365.369.37477 (except for a Jacobian

ing to s > 0. For a reacting system composedNdatoms  factop78-381 discussed in Section 2.4.5). The canonical
with the 3N mass-scaled coordinatBsit is possible to rotate  yariational transition state location is a compromise of an
and translate these coordinates in such a way that the rotatedentropic” factor associated with the partition functions and
coordinatez is tangent to the MEP & with the value of  an “energetic” factor associated with the exponential fafor,
zero at the point of tangency and with coordinates whereas the conventional transition state location is entirely
{U(9),.. Usn-1(9)} that are orthogonal to the MEP & determined by the energetic criterion, which puts it at the
Although the MEP follows a curved path, it is possible to pighest energy point on the minimum energy path, i.e., at
define, at each value of a Cartesian coordinate system that ne saddle point.

has one coordinate directed along the MER; dhis set of In summary, we have reduced the problem of running
coordinates{ui(s),.. u-1(s), s} are called local natural  trajectories on a “global” B potential energy surface to the
collision coordinates. The position of a particular dividing eyaluation of the flux through a K8 — 1)-dimensional
surface along the MEP will be determined by Bwalue at  giyiding surface. To find a reasonably accurate dividing
which it intersects the MEP. Hereafter, we designat®(gls  syrface in a practical way, one computes a minimum energy
the set of isoinertial mass-scaled Cartesian coordinates alongyath and searches for the optimum dividing surface from a
the MEP. o , __one-parameter sequence of hypersurfaces orthogonal to this
ilar to eq 2.4.28 but with the rate constant as functios of  ne pest choice in every case; however, for reactions with
tight saddle points it is usually very good.

hereK*?is the reciprocal of the standard-state concentra-
tion, andAGST'O(T,s) is a quasithermodynamic quantity, as
discussed above. Condition (2.4.33) is equivalent to

GT,
oo 1My The MEP, defined as above, can be calculated by the
ke (T.9) _% q)(R:(T) expl=AVier()]  (2.4.31) solution of the steepest-descents equation
As discussed in the paragraph below eq 2.4.30 the rate 3—);= —g (2.4.37)

constant calculated this way is always larger than (or equal
to) the correct classical mechanical local-equilibrium result. whereg = g/|g| is the normalized gradient of the potential.

Therefore we want to minimize the calculated rate constant. Tpg first step along the MEP starting from the saddle point
The resulting rate expression is known as canonical varia- cannot e calculated this way because the gradient at any
tional transition state theory (CVTST) or simply canonical  giationary point is zero. At the saddle point, the direction
variational theory (CVT}%%37he resulting rate constant  z1ong the MEP is given by the unbound normal coordinate
IS associated with the imaginary frequency. Finding this direc-
. tion requires the force constant matrix (or Hessiargt the
kgVT(T) - kgT(T’SE = min kgT(T,s) (2.4.32) transitic(])n state structune’; since the ele(ments of trr?)é force

constant matrix are second partial derivatures of the potential,

wheres = V7 is the optimized position of the dividing this matrix is also called the Hessian. The force constant

surface. This condition is equivalent to matrix is diagonalized by the orthogonal transformation
a Byt EN. +

where 1 indicates transpodeg(x®) is the orthonormal matrix
with the condition that the second derivative is greater than of eigenvectors whose columns,(x¥) correspond to the
zero. One should also remember the condition that the normal-mode directions at the saddle point akg®) is a
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diagonal matrix that contains the eigenvalues callg@), LE(9)FR(s)LCT(s) = A(s) (2.4.43)
which are the normal-mode force constants at the saddle
point, and are related to the normal-mode frequencies by and the eigenvalues.(s) are related to the generalized
normal-mode frequencies(s) by
}.m(X:t))l/Z

(,l)m(Xi) = (T /Im(s)

m=1,..,N (2.4.39) . (S):(
" I

1/2
) m=1 ... N (2.4.44)

At the saddle point there afe — 1 positive eigenvalues
corresponding to the modes perpendicular to the reaction
coordinate (hereafteF is the number of normal mode
vibrations, equal to 8 — 6 for a nonlinear molecule and
3N — 5 for a linear molecule since five modes for a linear
molecule and six for a nonlinear molecule correspond to the
overall translations and rotations) and one negative eigen-
value (denoted(x¥)), corresponding to the reaction coor-
dinate. This normal-mode has an imaginary frequenéy
with an eigenvectot ((x¥) in the direction of the reaction
coordinate. Then, the first step along the MEP can be taken
along this eigenvect#i®-383

whereF — 1 positive values correspond to the generalized
frequencies of the bound normal modes at that point on the
MEP and the remainingh8— F + 1 eigenvalues are zero.
The directions along the various generalized normal modes
m are given by the corresponding columns of the'(s)
matrix.

In the above discussion, TST has been derived by using
classical mechanics, but for most reactions quantum effects,
especially zero-point energy and sometimes tunneling, cannot
be ignored. Next we consider including these quantum
effects.

Quantum effects can be included in an ad hoc way in CVT
N 5 for the normal modes perpendicular to the reaction coordinate

X(s; = £05) = X" £+ 0SL(S)) (2.4.40) by adiabatic quantization of their partition functions. Here
adiabatic means that, at each values,dhe energy levels of
where the sign indicates whether the direction is toward motions transverse to the reaction coordinate are quantized
reactants or toward products. The procedure just presentedas if motion along the reaction coordinate were infinitesi-
corresponds to using a quadratic expansion of the potentialmally slow. The resulting transition state theory expressions
at the saddle point; another possibility is to use a cubic are called quasiclassical, and we drop the subscript C.
expansion around the saddle poifit. The chief quantum effect on the reaction coordinate is

After the first step, the gradient is no longer zero and the penetration through the barrier (tunneling effect), which is
next steps can be taken in the direction of the normalized most readily treated by using a semiclassical model. The
gradient. One of the simplest algorithms is the Euler single- quantum effects on the reaction coordinate are included
step method or Euler steepest-descent (ESD) mé&thid through a multiplicative ground-state (/G) semiclassical
which the next geometry along the MEP is calculated as transmission factat®V"/¢(T), and therefore adding quantum

effects to eq 2.4.34 yields
g[x(sj—l)] 5 CVTIG — cvT
S (2.4.41) KSVTS(T) = k(MKEYT(T) (2.4.45)

l9[x(s-D1l
where « is a transmission coefficient that accounts for
This algorithm requires quite small steps and therefore a largetunneling, and
number of potential energy gradient evaluations. This is not

X(§=5§-1 £ 09 =X(§-1) T 0

a problem if the PES is given in analytical form, but it can 1 Q¥(Ts=s"T)
be very time-consuming for high-level direct dynamics. KVT(T) :% R expl=AVier(s™ )]
Improvements to this method and other more efficient (M)

methods that may use larger steps are described else- (2.4.46)

where41.162.33438 Some of these algorithms, such as the e will defer discussion of and tunneling to Section 2.4.4
Page-Mclver metho# make use of Hessiang(s), along  and focus here on the rest of the quantized formalism.
the MEP. In eq 2.4.46,QC°T(T,9) and ®R(T) are the quantum
To calculate the vibrational part QST (T,s)ineq2.4.31 mechanical partition functions for the generalized transition
we need to obtain generalized normal-mode frequenciesstate and reactants, respectively, where
along the reaction path. These are called generalized because
true normal-mode analysis is only defined at stationary points Q°'(T,9) = ijT(T) \(fibT(T,s)Qg(T,s) (2.4.47)
and for systems that are not missing any degrees of freedom.
The elimination of the reaction coordinate is accomplished and
by rotating the coordinate systéthor by a projection
operator® here we describe the latter method. It involves ®%(T) = @,e,('DQQ,('I')QGb('I')Qﬁ,t(T)QE,(T)QEib(T)QE,t(T)
diagonalizing the projected Hessian matiiX(s), which is (2.4.48)
obtained fromg3:3%0 o
where®, is the relative translational partition function per
FP (9 =[1— POIFS)[1 — P(s)] (2.4.42) unit volume given by eq 2.4.27 ar@, Qui, and Q,; are
the electronic, vibrational, and rotational partition functions,
whereP is a matrix that projects onto the direction along respectively. Notice that we have now removed the subscripts
the reaction path and onto the overall translations and C, and all partition functions are now to be computed in
rotations. The diagonalization is carried out in the same way principle from quantized energy levels. In practice, it is
as for stationary points, with an orthogonal transformation almost always a good approximation to still treat rotation as
of the type classical, but quantization of vibrations is very important.
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In eqs 2.4.47 and 2.4.48 we ignore the coupling betweennegligible, the sum can be extended to include all the

the electronic, vibrational, and rotational partition functions. harmonic levels, and eq 2.4.55 can be replaced by the
The electronic partition function of the generalized transi- analytical expression

tion state is given by

expl-(1/2)5hw(s)]

(e-;lT(TIS) = Zld;(?-r(s) EXF{ _ﬂ[vy(s) - VMEP(S)]} Vlb m(T ) {l _ EXDthm(S)]} (2457)
” (2.4.49) - _
In the case of the reactants, the partitions functions are
where given by similar expressions to those just presented but using
(@) the equilibrium moments of inertia and the equilibrium
V,(s) = E; () + Vyr(9) (2.4.50)  frequencies of each of the reactants.

) _ ) ) The incorporation of quantum effects in the partition
wherey is the electronic quantum number with= 1 being functions for the bound degrees of freedom allow us to
the ground state so that include the zero-point energy to the classical potential along

the PES. Since we are assuming that the generalized normal-
mer(S) (9 = V(9 (2.4.51) mode frequencies follow the reagtion coorginate adiabatically
(the reaction coordinate is formally considered the slowest
motion at a dynamical bottleneck), we can define the vibra-

tionally adiabatic ground-state potential cur\\lé(s) as

with all quantities in eqs 2.4.492.4.51 being evaluated on

the MEP, and WheredGT(s) is the degeneracy of the

electronic statey. UsuaIIy we approxmateQ (T,s) by

Qq/'(T, 5= 0). VIO = Vil +HES(9  (2.4.58)
For the rotational partition functlerot(T ), since the

rotational levels are generally close together, we approximate,,nere EC

the quantal partition function by the classical one. It has been nt

shown for atom-diatom reactions that this approximation

gives an error in CVT rate constants of not more than about ES(s) = Z b, b (N =09 (2.4.59)

1% for room temperature and abo¥d=or a linear general-

ized transition state, the classical rotation partition is given

(9) is the total vibrational zero-point energy:

by and in the harmonic approximatidgf () is simply:
21(s) F1
ot(T.9) = = (2.4.52) ES(s) = (112)y hoy(9) (2.4.60)
h Orot m=1
wherel(s) is the moment of inertia, anal is the rotational The maximum of the vibrationally adiabatic potential
symmetry number. For a nonlinear GTS the rotational coincides with the maximum of the Gibbs free energy of
partition function is activation atT = 0 K.22 Anharmonicity may have an

important influence on the computed thermal rate constant,
(2.4.53) and in the next subsection we describe different methods to
include anharmonicity.

Another way of improving CVT is to consider a micro-
canonical ensemble, that is, an ensemble in which the system
is characterized by a given total energy rather than by a
temperature (as in a canonical ensemble). Such a treatment
is more complete than using a canonical ensemble because

V|b(T 5) = |_|wa HT.9) (2.4.54) it takes account of the conservation of the total energy in
each collision. The resulting rate constant is called micro-
canonical variational transition state theory or simply mi-
with QG5 (T.s) being the vibrational partition function of  crocanonical variational theoryYT). To derive thewVT
modem, rate constant we start from eqs 2.2.6 and 2.2.7. In eq 2.2.6,
the Boltzmann weighting factors represent the fraction of
Qiom(T:9) = ZeXp[_ﬁ om(MmS)]  (24.55)  reactant molecules in a given internal state when the system
is in thermal equilibrium

2
[0t

T 2P @
QT = [(h2 5) (91919

wherela, Ig, andlc are the principal moments of inertia.
The vibrational partition function at a generalized transition
state is evaluated within the harmonic approximation by

where the harmonic vibrational energy of level X_— BB X
dke int,K

ES! (NS = (nm + %)hwm(s) (2.4.56) wy = TN (2.4.61)

is measured at the bottom of the local vibrational well, that where X is A if k is i and where X is B ifk = j; df is a
is, atViep(s). The sum of eq 2.4.55 should finish with the  degeneracy; anEIntk andQ}(T) are the internal energy of
last term for wh|crE\,Ib (nm9) is less than the lowest bond  the reactant X in statk and the internal partition function
dissociation asymptote of the systé#h3°1.3%or it could also at temperaturd, respectively. Therefore

include all the quasibound states that are effectively bound

on the time scale of stabilizing collisions; but instead, if we QLM = Zdi);t'k exp[-AEN(T)]  (2.4.62)
assume that the contribution from high energy levels is
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Thus, the total rate constant is related to the state-selectechumbers], M;, anda that label the members of a complete
rate constants by basis set at the transition state. Then eq 2.4.69 would be

K(T) = [QRMQRMI Y &Pl (M) N(E) = Zgzpé%(a (2.4.72)
1) g
A B
XPEAEm + Ene)] (2463) 1 transition state approximation is to replace this by

Following Appendix | of ref 383 then leads to an o M
expression of the thermal rate constant as a function of the N'(E) = Zgz(a(E —E) (2.4.73)
]

state-selected reaction probabilky,
where® is the Heaviside function, ang"™ is the energy

k(T = Z(ZJ + 1)2 j;) PlJIm (E) exp(—pBE)BdE of stated with rotational quantum numbedsandM; at the
ShdR(T) i ! transition state.
(2.4.64) Actually P (E) is not a physical observable, and it is

wherel is the quantum number associated witrandm is not well defined, bthMlts only purpose is to motivate eq 2.4.73.
the projection of this orbital quantum number on an arbitrary !N this equation,E;™ is not actually well-defined either
space-fixed axis, (since the transition state has a finite lifetime), but we have
already used transition state energy levels in computing
(2.4.65) canonical partition functions, so that is not a serious
limitation. Furthermore, in Section 3.1, we will see that
and pI - is the reaction probability as a function of the accurate quantum mechanical scattering calculations lend

rotational and vibrational quantum numbers of reactants andSUpport to the existence of quantized energy levels of the
alsol, m, and total angular momentud The factor of 2 transition state.
+ 1 results from a sum overJ2+ 1 values ofM;, the If we designateNC'(E,s) as the number of vibrational
component of] on an arbitrary space-fixed axis, since the rotational states W|th energy less tHaat a given generalized
probabilities are independent dfl;. Let o denote the  transition state, then
collective set of quantum numbeijen;. ThenJ, M;, andoa
represent a “channel” specified by a complete set of quantum N*(E) = NGT(E S) (2.4.74)
numbers labeling the initial state of a collision.

Next define thel-resolved cumulative reaction probability ~Microcanonical variational theory is given by minimizing

E=E,+Eh; +E>

int,i int,

NY(E) as93-396 the value ofNC'(E,9), that is
N’(E) = Zpﬂm (E) = ZP (E)  (2.4.66) NVT(E) = mlnNGT(E 5) (2.4.75)
in terms of which eq 2.4.64 can be rewritten as or equivalently
INST(E,S
K(T) = Z(ZJ + 1) ["N’(E) exp(-BE)BdE My (ES) = (2.4.76)
ﬂhq) (T) Js s=s.4VT(E)

(2.4.67) . .
The derivation above shows why a minimum-number-of

Summing overd gives states criterion should be preferred to a minimum-density-
of-states criterion to evaluate the microcanonical rate con-

k(T) = = jg N(E) exp(—FE)SdE (2.4.68) stant®?
ﬁh(b Again we assume that rotation and vibration are separable
) ) . with vibrational quantum numbers denoted This yields
where the cumulative reaction probability%s39° for NCT(E,9):
_ Iy — IM
N(E) = Z(ZJ + DN(E) = Z%ZPQ JE) (2.4.69) NGT(E 9= ZG)[E ~ Vel —
This result is exact. Evio(NOINGIE — Viyes(s) — Eqp(n.9).s] (2.4.77)

The transition state theory approximation to eq 2.4.68 is

where forNS[(E,s) we use the classical approximatis.

KVT(T) = —=— [*N(E) exp(-BE)BdE (2.4.70) If we calculateNC'(E, s = s°¥T) we obtain the CVT
ﬁhd) (M) 0 thermal rate constant. Another possibility is to optimize the
generalized transition state microcanonically for energies up
Each of the probabilities in egs 2.4.64 and 2.4.66 satisfiesto the microcanonical variational threshold energy and
canonically for higher-energy contributions. This leads to
0= Pulm =1 (2.4.71)  the improved canonical variational theory (ICVo§;0
which has the same threshold @¢T but the calculations
These probabilities are labeled by the quantum numbers thatare almost as simple as for CVT. One can easily show that
describe the initial state of a collision. We could instead
specify the probabilities by a complete set of quantum KETST > VT > [IOVT > VT (2.4.78)
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where CTST denotes conventional TST, i.e., the dividing
surface at the saddle point.

Full details of VTST calculations are given else-
Where§83,401,402

Next we present some examples to illustrate the difference
between conventional TST, CVT, andVT. Fernadez-
Ramos et at% used ab initio dual-level direct dynamics to
study the CH C;Hg — CIH + C,Hs hydrogen abstraction
reaction. Low-level calculations were performed by MP2/
aug-cc-pVDZ electronic structure methtfd,and the high-
level calculations were performed using the infinite basis
(IB) electronic structure methdt®to correct the low-level
energies. Although a transition state was located for this
abstraction reaction, after the ZPE contributions are included
there is no barrier in the effective potential along the reaction
coordinate, so important variational effects are expected.

Both Vyep and the vibrationally adiabatic potential

AVE(s) = VE(s) — VO (reactants)  (2.4.79)

are plotted along the path in Figure 1. At room temperature
the maximum of the free energy (see eq 2.4.36) is located

3

- VMEP
JR— AVBG

Energy(kcal/mol)

s (ay)

Figure 1. Plots ofVyep and relative vibrationally adiabatic potential

AVS along the reaction path for the Gt C;Hg — CIH + C;Hs
hydrogen abstraction reaction.

ats’V" = —0.364 @, whereasl’V" is energy dependent (see
eq 2.4.76). Figure 2 shows the variation gf'" with
energy; it moves in the intervat0.70 &, —0.22 a] at low
energies and remains almost constant above 55 kcal/mol,

VT _

Fernandez-Ramos et al.
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Figure 2. Variation with energy of the location of the minimum
sum of states for the C+ C,Hg — CIH + C,Hs reaction.

are smaller than the CVT, ICVT, and/T rate constants by
factors of 1.58, 1.36, and 1.16, respectively.

For cases in which the transition state is “tight” and no
light particle participates in the reaction, so tunneling is not
important, conventional TST can still provide a reliable
determination of thermal rate constants, and it also provides
insight into reaction mechanisrfg.

In the examples just discussed, VTST is applied to study
a particular system, so if we want to study another system,
even if similar, the entire procedure, starting with building
the potential energy surface, has to be repeated. To make it
easier to study a series of reactions, Truong and co-
workerg®-412have presented a method called reaction class
transition state theory (RC-TST), which profits from recog-
nizing the common aspects of a given set of chemical
reactions. Thus, reactions with similar characteristics form
what is called a class, and it is expected that they also share
some similarity in their kinetics parameters. The procedure
involves accurate calculations for one of the reactions, called
the principal reaction, and all the other thermal rate constants
are obtained from empirical relations. Truong applied these
ideas to hydrogen abstraction reactions by hydrogen atoms
with encouraging result®8-412

An important point to keep in mind in using either

where the zero of energy is the potential energy at the conventional or variational transition state theory is that extra
equilibrium structure of reactants. Despite the variation of assumptions are required to predict more than the overall
VT the CVT anduVT rate constants are quite similar at reaction rate. We will present some discussion of product
room temperature with values of 6.54 101 and 6.08x state distributions in Section 3. Sometimes not only the
1071 cm® molecule® s%, respectively, and at higher _product states t_)ut even the_ identity of the products is
temperatures they are even closer. This example shows thathaccessible. This problem arises if two or more products
even for reactions with variable transition states the CVT share a given transition state. This can occur if the reaction
rate constants are reasonable and economical alternatives tgath bifurcates after the transition stat&:***
uVT rate contants. However, the conventional TST rate
constant is 2.33« 1071° cm® molecule! s™! and seriously
overestimates the experimerfélvalue of 5.75x 10 %% Conventionally, one would compute the reactant partition
Another interesting example is the comparison of CVT, function accurately by a sum over states, although in practice
ICVT, anduVT with QCT for the room-temperature abstrac- this has only recently become possible for molecules with
tion of a bromine atom in the bimolecular HgBr Hg — more than 3-4 atoms*?? An alternative method to compute
Hg + Br; reactior?*® In this case, the QCT rate constants accurate vibrationalrotational partition functions is the

2.4.3. Anharmonicity
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Feynman path integral method, and this approach has beems(™ are chosen this way is known as Morse approximation

applied to compute converged partition functions feDb'*? |.360.365.429The energy levels of this potential are giverfdy

the first molecule with a torsion for which an accurate

partition function corresponding to a known potential energy  gGT (n,s) = hw (N, + 1/2)[1 — x(m)(s)(n +1/2)]

surface is available. More recently, converged vibrational "™ " e M m

partition functionals have also been computed for eti{&he. (2.4.86)

Before discussing these methods though, we consider some . . My .

simpler approximations. wherenp, is the level index, andy,’(s) is the anharmonic
The vibrational partition functions discussed in the previ- constant given by

ous section are based on the harmonic approximation for all

the normal modes orthogonal to the reaction path. In this X3(s) = hiv(S)/AD(s) (2.4.87)
approach, the partition function is separable and the potential ) ]
due to a given normal moda is given by This Morse model does not give any improvement for modes

in which knme(s) = 0, such as the bending modes of linear
V[su (9)] = (1/2 Nu (91> (2.4.80 systems, out-of-plane modes of planar systems, and certain
[SUn(S)] = (1/2KnfS) [ Un(S)] ( ) stretching motic_ms. This kind of mode can be treated by a
wherekmnis the principal (the two subscripts are the same) dquadratic-quartic model with
normal-coordinate force constant, ang(s) is the normal- 1
mode coordinate for a geometxyclose tox(s), specifically, V(m)[s,um(s)] = E|<m n(S)[Um(S)]z + Knnm AS)[Um(S)]‘l

U(9 =[x — x(ILE() (2.4.81) (2.4.88)

o o . which can sometimes be accurately approximated by a
~2.4.3.1. Principal Anharmonicity. In general the vibra- perturbation-variation method to obtain the energy lev-
tional d_egrees of.freedom of the stationary points and g|g430431 7 centrifugal oscillator treatment provides a more
generalized transition states along the path are bound by aryecyrate approximatioi2 Anharmonicity of bending modes

anharmonic potential: is often dominated by quartic anharmonicity, and it can be
1 very significant, especially at high temperatéte.
V(m)[s,um(s)] szmm(s)[um(s)]z-i- kmmn(s)[um(s)]s—i- The anharmonicity can be also treated by the WKB

approximatior?>-42” Since this method is more expensive,
KammkD[Un(9)]* + «+ (2.4.82) it might be used only for finding the zero-point energy of

some or all the normal modes. For several ataliatom
whereknmn(S) andknmmr(s) are the third and fourth principal  reactions, the results obtained by VTST improve if the WKB
normal mode force constants. These force constants can benethod is used to treat anharmonicity instead of the Morse
obtained from numerical derivatives of analytic gradieéfits.  model42”
One difficulty with using this expansion is that the cubic  Another important source of error in calculating vibrational
term is always unbounded from below, and the quartic term partition functions is the inapplicability of the harmonic
is unbounded from below knmmmis negative. It therefore  oscillator (HO) approximation for low-frequency torsional
requires finesse to include anharmonicity in a practical modes. Such modes show a hindered rotation transition from
scheme. HO behavior at low temperature to free internal rotation at

One approach commonly used to treat anharmonicity is high temperature. An interpolatory function that is reasonably
to assume that the normal modes are independent (notaccurate has the fori#

coupled), so the partition function may still be evaluated by
eq 2.4.54. This section begins with independent normal-mode HR ~ QMO (2.4.89)
(INM) methods, and within the INM framework we discuss " mom
Morse and quartic anharmonicit§f together with the
Wentzel-Brillouin—Kramers (WKB) methot?> 427 and the
anharmonicity of bond torsional modes.

To evaluate the energy levels of the 1D potential (2.4.82)
one possibility is to replace that potential by a Morse
function#2®

\m su(S)] = D.(S}{ exp[— MQu (9] — 112 (2.4.83 The interpolating function approaches unity wgn— hw./
[SUn(S)] = De(SHexPI (un(S] — 11~ ( ) keT goes to infinity, and it approache®, w, when wi,
where D¢(s) is the dissociation energy for the vibrational goes to zero, witQi" being the free-rotor (FR) partition

whereQﬁR is the approximate hindered-rotor (HR) partition

function, Q[1° is the harmonic oscillator partition function,
andfy, is an interpolating function given by

f.,= tanhQ w,, (2.4.90)

potential on the PES: function. For small values ofi, the interpolating function
deviates only quadratically from its limiting form.
De =D — Vyep(9) (2.4.84) Assuming that the torsional degree of freedom is separable,

. ) o that the reduced moment of inertia for the hindered rotor is
andD is the lowest dissociation energy of the system. The independent of torsion angle and is known, and that the

range parametq@f\j,“) is given by torsion potential is the lowest-order cosine potential with the
correct periodicity, results obtained by this formula were
BIV(S) = [K(9)/2D ()] (2.4.85)  tested against the tables of Pitzer and Gwfiri®and the

accuracy obtained was encouraging. However, the separabil-
so the potential has the correct force constant at theity approximation and the simplification of the torsional
minimum. The Morse model in which the parametegand potential may cause errors as large as or larger than the
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principal anharmonicity, so this success for a separable 2.4.3.2. Mode-Mode Coupling. In a full treatment of
torsion may be irrelevant. Furthermore, the reduced momentanharmonicity, one cannot consider the modes one at a time.
of inertia is not independent of torsion angle, and even for For example, in addition to torsions, which are 1D internal
the equilibrium geometry it is not trivial. In a series of rotations, one must also sometimes consider 2D internal
articles, Pitzer and co-workers derived various approximate rotations, especially for association reactions, and ap-
and exact expressions for decoupling the internal rotor from proximate formulas have been develop&dt¢ More so-
the external rotor, including the case of multiple rottfs?3® phisticated methods for association reactions are presented
East and Radom have recently provided a useful summaryin Section 2.5.2.
of their key result$#° Robertson and Wardlaw provide an Another kind of anharmonicity corresponds to mede
alternative viewpoirft! whose extension to all modes could mode coupling. This involves cross terms (or nonprincipal
prove useful in considering nonrigid effects. force constants) that may couple vibrational modes to each
In a later publication Chuang and TruHtérand Katzer ~ Other**“®>and to rotational modes: Unless one includes
and Sa%** extended the above formulation to nonsymmetric mode-mode coupling, attempts to include anharmonicity are
torsional modes. Furthermore, McClurg et4land Ayala ~ almost as likely to make the calculations less accurate than
and Schlegéf® have suggested alternative procedures involy- MOre accurate because anharmonicity cancels out to some
ing the Pitzer-Gwinn approximation with a reference poten- €xtent between the reactant and the transition state partition
tial. A goal of the Chuang-Truhlar and Ayala-Schlegel work functions. Anharmonicity in low-frequency bends and tor-
was to provide an automated general method, especially forSions that occur in the transition state but not the reactant
overcoming the fact that internal rotors are usually coupled &€ Nnot subject to this cancellation, and anharmonicity in such
to other low-frequency modes and sometimes coupled to Modes can be an important source of error in transition state
high-frequency modes, but the methods remain unvalidated.theory. These modes, however, are particularly difficult to

Further work is required to obtain satisfactory practical tréat because of modenode coupling. .
procedured The simplest method to treat anharmonicity quantum

mechanically including modemode coupling is perturbation
theory#66-470 and a particularly effective way to use pertur-
bation theory is as follows (this is called simple perturbation
theory or SP1). In this approach, we write the potential
energy function for a polyatomic molecule as

When there is a high barrier between torsional minima at
the transition state, one can, as a first approximation, add
the rate constants for the different conformers of the transition
state with each treated harmonicaty.

For applying eq 2.4.70, it is necessary to calculate the
number of states. Counting methéts*°and the Whitten- 1F 5 o
Rabinovitch methot® are the most popular methods em- V=Vt - uog Uy +Vay,  (2.4.91)
ployed. At the classical level, it is important to have a 2=
procedure for estimating the density of states for hindered whereV, is the energy at the equilibrium geometry, angh,

internal rotors. Forst* Knyazev;*24**and McClurg>*have  contains all the anharmonic terms. The harmonic partition
provided approximate expressions for the density of statesfunction of eq 2.4.54 can be rewritten as

via inverse Laplace transforms of the canonical partition

functions. The Pitzer-Gwinn approximation has also been exppEy)
employed at the microcanonical levét,with simple con- Quip = (2.4.92)
figurational integrals providing the classical state denstfies. F
Jordan et al. determined analytic classical partition functions [101 — exp(=BA,)]
m=1

and densities of states for a variety of hindering potentfals.

Knyazev and Tsang have recently generalized their resultswhereE, is the harmonic zero-point energy of the normal
for internal rotor state densities to obtain an algorithm for modes, and\r, is the lowest excitation energy of mode
deriving approximate quantum anharmonic state densities forin SPT, these quantities are obtained by second-order
arbitrary potential energy fornf8® The algorithm is based  perturbation theory (PT2¥ 479 by going to second order in

on classical phase space integrals coupled with quantumcubic force constants and to first order in quartic ones. The
corrections obtained via the Pitzer-Gwinn approximation and method has been test&i*73for several cases where accurate
inverse Laplace transforms of the canonical partition func- partition functions were available, and it was found to be
tions. At the classical level, accurate numbers of states areefficient and to represent a considerable improvement over
easily expressed in terms of phase space integrals that cathe INM approximation.

generally be reduced to just configurational integféis. One could also consider using perturbation theory for
Monte Carlo evaluation provides a standard procedure for higher-energy levels, as opposed to just the zero-point level
evaluating the multidimensional configuration integrals. and fundamentals in eq 2.4.92. This presents two problems.
Direct evaluation (without fitting the potential energy surface) First, perturbation theory tends to diverge for the higher
is feasible up to at least five atoms. Densities of states canlevels, and it is much less accurate than for the low levels.
be obtained via either numerical or analytic differentiation. Second, calculating only the zero point energy and funda-
Quantum corrections may be implemented with a microca- mentals by perturbation theory requires only a subset of the
nonical version of the Pitzer-Gwinn approximation. Alter- force constants and is therefore more economical and feas-
natively, the usual Pitzer-Gwinn approximation could be ible. Thus, SPT should not be considered a shortcut but rather
applied to the classically evaluated canonical partition an algorithm designed to enhance accuracy and efficiency.
functions, followed by inverse Laplace transforms. Parneix =~ For some molecules, the dominant error in vibrational
and co-workers propose a different approach based on thepertubation theory is caused by Fermi resonances and other
temperature dependence of the average erféfggnd similar resonances since the original method has singularities
Borjesson et at’! proposed a power-law form with the when there are resonances, that is, when one frequency is a
parameters determined from thermodynamic data. ratio of integers times the other. The PT2 method has been
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corrected’™ to remove these singularities in an automatic
way.

Four other approaches to including anharmonicity that
include mode-mode coupling are vibrational configuration
interactions'?2424475477 Feynman path integratd®47¢484and
the Pitzer-Gwinn approximatiort3**8and Einsteinr-Bril-
louin—Keller (EBK) quantizatiortt

Vibrational configuration interactid@#24475477 (\VCI) is
straightforward in that vibrationalrotational energy levels
are calculated variationally, and the partition function is
obtained by summing eigenvalues. However, without using

Chemical Reviews, 2006, Vol. 106, No. 11 4541

corrects for nonseparability of the reaction coordinate at the
classical level, and(T) corrects for quantum effects on the
reaction coordinate. If the reaction coordinate truly were
classical and separable, there would be no recrossing; thus
I'(T) may be considered a recrossing correction. If the
reaction coordinate were classical, there would be no
tunneling and no diffractive reflection from the barrier; thus
«(T) may be considered a correction for these effefbs
simplicity it is often called a tunneling correction. Note that
even if one neglects recrossing, it is important to include
the nonseparability of the reaction coordinate at the quantal

special techniques VClI rapidly becomes unaffordable as thelevel; thusk(T) should be multidimensional. In the rest of

molecule size increases. The largest molecule for which
vibrational-rotational partition functions have been com-
puted by summing converged vibrationabtational eigen-
values is CH.*?2 The first simplification one can make is to
assume separable rotation. With this approximation, con-
verged vibrational partition functions have been calculated
for C;Hg using VCI#?4 This is a difficult problem because it
involves 18 vibrational degrees of freedom, one which is a
large-amplitude torsion, but its solution was made possible
by using a hierarchical expansihof the potential. Future
progress is possible as the potentiality of this method is still
largely untapped.

Feynmann path integrdf$478-484 allow the direct com-
putation of partition functions without separating rotation
from vibration and without converging or even calculating
individual energy levels. The method has been applied
successfully to kD ,*80482H,S 482 H,Se#82 H,0,,*2 and seven
isotopologs of HO,. Note that the tetra-atomic cases involve
a large-amplitude torsion. The key to further success with
this method is the development and exploitation of improved
sampling?® and extrapolatiof¥*-“83algorithms.

The Pitzer-Gwinn method*48%is computationally less
demanding than VCI or path integrals. It provides a reason-
ably accurate way to include modenode coupling effects
at high temperatur#?

The EBK quantization method has been empld§fgavith
total angular momentum equal to zero) in the flexible
transition state model discussed further in Section 2.5.2.

An interesting example of a 2D treatment of coupled hin-

this section, we consider further the factors in eq 2.4.93,
starting withI'(T) and then considering(T) and g(T).

The thermal rate constants derived so far in this review
are based on the fundamental assumption of TST, namely,
that there is a dynamical bottleneck located at the transition
state (conventional TST) or at a generalized transition state
obtained by a canonical (CVT) or microcanonicaM()
criterion, respectively. In the latter cases, the dividing surface
is optimized variationally to minimize the recrossing. Placing
the transition state at the location that maximizes the free
energy of activation (see eq 2.4.36) is equivalent to minimiz-
ing recrossing and therefore to maximizifigThis perspec-
tive on VTST was first proposed by Evat¥8and it provides
a key conceptual framework for modern variational transition
state theory®! However, we still may have some classical
recrossing at the location of the best variational transition
state because we do not allow the transition state dividing
surface to be completely optimized as an arbitrary function
of coordinates. In fact, as long as we continue to assume
that classical mechanics is applicable, we could in principle
make the dividing surface more and more general, until it
depends on all coordinates and all momenta, which would
eventually allow us to totally eliminate recrossing. This is
not really an option once we quantize the vibrations within
the dividing surface because practical (which usually means
separable-at least until we get to Section 2.5) approxima-
tions to the quantized energy levels are valid only for simple
dividing surfaces, and thus some recrossing remains. Al-

dered internal rotors is provided by the reaction of ethylene though practical experience for simple barrier reactions has
with butylbenzene, as recently studied by Van Speybroeck shown that recrossing effects can usually be made small even
and co-workerd? For this reaction, the net effect of the With very manageable prescriptions (such as hyperplanes in
potential couplings on the canonical rate coefficients corre- coordinate space) for the dividing surface, there are ap-
sponds to a reduction in the rate coefficient by only about Proaches, like the unified statistical motféf3 (US), the
30%, due in part to some cancellation of errors in the canonical unified statistical mod&t*** (CUS), and the
partition functions for the transition state and the reactants. unified dynamical modé#*#%>497(UD), that can be used to

The anharmonic effects on Atlusters were estimated to account for the recrossing that remains after the variational
be factors of 2.5 to 2.¢88 transition state has been optimized within some set of

_ _ o necessarily restricted choices for the dividing surface.
2.4.4. Tunneling, Recrossing, and the Transmission The US%24%and CUSE34%models have been proposed

Coefficient to describe reactions with more than one bottleneck. The

The above treatment assumes reactants at local equilibriunthermal rate constant for this model is giverftly
and separable, classical reaction coordinate motion. One may

attempt to remove these deficiencies by multiplying the GT(T)
VTST rate constant by a correction factor, called the kUS'(T)=e'—R S NUX(E) exp(-BE)BAE  (2.4.94)
transmission coefficient as in eq 2.2.2. Although the various phd™(T)

physical effects that may be included in a transmission
coefficient are not independent, it is useful for discussion where
purpose¥? to separate them qualitatively as follows:

y(M) = g(MI(Mx(T) (2.4.93)

where g(T) corrects for nonequilibrium reactant$;(T)

No (E) = Ny (E)TS(E) (2.4.95)

andI'VS(E) is the US recrossing factor defined*&s
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NAVT(E) NYT(E) because it involves starting the trajectories at the transition
rSE) =1+ —— - (2.4.96)  state, which is a form of rare event sampling and is very
NGZ'(E)  NZ*(E) efficient. A quantized version of this approach is called the
_ unified dynamical (UD) theory. In the UD model the
whereN""(E) is the second lowest minimum &C'(E, s) recrossing corrections to VTST are evaluated from trajec-

andNI®(E) is the maximum oNC'(E, s) that lies between tories beginning at a quantized variational transition
the two minima. It should be noticed that the US calculation State?**49549"The short-time dynamics in the vicinity of a

is nonvariational, although it always satisfies tR&{(T) < localized dynamical bottleneck determines the rate. A key

k4r(T). The same analysis can be applied to a canonical Source of potential error in this approach is that even though

ensemble by defining canonical probabilities in terms of the trajectories are quantized at the variational transition state,
canonical-ensemble averages of the flux through theseclassical mechanical dynamics does not preserve this quan-

surface$% The resulting canonical unified statistical (CUS) tization as they evolve in time.

thermal rate constant assumes the form In eq 2.4.45, the VTST thermal rate constants include the
guantization of vibrations orthogonal to the reaction path by

KEUS(M) = KT (MIrevsm (2.4.97) using quantum instead of classical partition functions. But

with « = 1, the reaction coordinate is still treated classically,

with TCYT) being the CUS recrossing factor. and therefore tunneling is neglected. One way of correcting

The CUS result can yield a reduction in the rate coefficient this deficiency is to include a multiplicative transmission
of no more than a factor of 2 relative to the minimum of the coefficient«*'¥ such that the resulting rate constant is given
VTST treatments of the two individual bottlenecks. In by
contrast, at the microcanonical level there is no such limit
on the magnitude of the effect of the unified statistical K (T) = XY (KT (2.4.98)

treatment. Indeed, in a recent treatment of the addition of whereX indicates the variational method used (CVT, ICVT,

OH to GH,, the unified statistical treatment yielded a L :
: or uVT), andY indicates the approach used to treat tunneling.
reduction by more than a factor of #%.However, the CUS In the case of conventional TST we have

and US methods, although nonvariational, may be more

accurate that CVT andVT methods when the reaction has Yy — Y
several bottlenecks. An example is the VTST study of the KM = (MK) (2.4.99)
H + O; — HO + O, reaction carried out by Ferndez- One of the first and simplest methods of calculating

Ramos and Varand#8 using a DMBE potential energy tunneling in conventional TST is by using the semiclassical
surface for the dynamics calculations. The reaction has aWigner correction, which involves an expansiorhiand is
very low barrier and two dynamical bottlenecks near to the given by®%’
transition state structure. ThevVT and US rate constants
were compared with QCT calculations in the temperatures Ki’W(T) =1+ imw*mz (2.4.100)
interval 106-700 K. TheuVT values were about a factor 24
of 2 larger than the QCT ones, whereas the US ones aréyherew?* is the imaginary frequency at the transition state.
only about 1.4 times larger than the QCT calculations, as Thjs correction is very approximate since it represents trun-
can be seen in Figure 3. cating a power series i after the first two terms; it should
not be used wher*% is > 1.2. Furthermore, even then, it
is only valid when the contributions due to tunneling come
only from the transition state region and the potential around
it can be well approximated by an inverted parabola. At the
same time, the reaction path curvature has to be negligible.
A better approximation, even when the reaction path
curvature is neglected, is to assume that the bound degrees
of freedom follow the reaction coordinate adiabatically and
we can treat tunneling along the reaction coordinate by
calculating the probability of penetration through a 1D
potential with an effective reduced mass. This assumption
is equivalent to treating the reaction coordinate as a slow

12
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%0 200 a0 400 500 600 700 motion with respect to the bound degrees of freed&#r 1508
TK which is reasonable when reaction-coordinate motion cor-
Figure 3. Arrhenius plot comparingVT, US, and QCT methods  responds to a threshold. Specifically, the potential along the
for the H+ O3 — OH + O, reaction. reaction coordinate would be given by
When there are both consecutive and competitive dynami- — GT
cal bottlenecks, one may use the competitive canonical Va(n,J,s) = Viyep(s) + B (nJ,s) - (2.4.101)
unified statistical (CCUS) modét3:500.501 where
Whereas the US and CUS models involve statistical
estimates of recrossing probabilities, it is also possible to ES'(nJ,9) =ES (N9 +ES(J9 (2.4.102)

use trajectories for this purpose. Ke¥kand Andersor+ 50

showed how trajectories can be used to calculate a correction A further approximation would be to assume that at low
for the breakdown of the TST assumption in a classical temperatures the system is in its ground state and so the
mechanical context. In fact, this is a convenient way to do potential governing the motion along the reaction coordinate
trajectory calculations for gas-phase reaction processesis the ground-state vibrationally adiabatic potent\ﬂ(s),
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which is given by eq 2.4.58. A justification for this ground- probability can be approximated for energies above but near
state approximation is postponed until Section 3.1. The VAG by512

ground-state transmission coefficient is given by the ratio

of the thermally averaged ground-state quantal transmission ~ P**9(V*® + AE) = 1 — P*"%(V*® — AE) (2.4.110)
probability PS(E) to the thermally averaged ground-state

transmission probability evaluated with the assumption of WhereAE = E — VA€, The presence of the Boltzmann factor
classical reaction coordinate motid%g(E):“Olv“gl in eq 2.4.103 allows one to use eq 2.4.110 well above the

barrier, and therefore_ th(_a se_miclassical probability in the
fOOOPG(E) exp(—BE)dE whole range of energies is given by

KX/G T) = f°° < (2.4.103) 0 E < EO
P(E) exp(-pE)JE ! . aG
° SAG(E) = {1+ exp[(E)]} EOGS E<V .
In the case of the CVT, the classical transmission probability 1— PSASVAC — p)V'® < E< 2V*° — E,
is approximated by 1, 2\AG _ E,<E
PS(E)=O{E— VS[s™V(M]}  (2.4.104) (2.4.111)
h
whereVS(s) was defined in eq 2.4.58. where
The transmission coefficient for the CVT thermal rate Ve(s= — w)
constart®is readily obtained by substituting eq 2.4.101 into E, = max VZ (2.4.112)
eq 2.4.103, yielding a(8= 1 )

CVTIG Ty _ cvT G , When the transmission coefficient is calculated along the
« M=4 exp{,BVS[& (T)]}fo P™(E) exp(-SE)dE MEP with eq 2.4.103 and the probabilities of eq 2.4.111,

(2.4.105) but in absence of reaction path curvature, the ré&8uk
) o - called the zero-curvature tunneling (ZCT) transmission
For the ICVT ang«VT the classical transmission probability  ¢gefficient.
is383 A more accurate way of treating tunneling is to include
G s the reaction-path curvature, which is physically meaningful
PC(E) =O6{E—-V™} (2.4.106)  if computed in an isoinertial coordinate system such as used

. ) o in this review. Letx(s) denote the geometry in isoinertial

adiabatic potential, and the substitution into eq 2.4.103 yields, the MEP. The curvature vecte(s) of the reaction path at
for instance, fou VT, the following transmission coefficients:  thjs geometry is given by the second derivative of the

tryx(s) with respect tcs, i.e.,
expl VIS (M)) Jeome
KyVT/G(T) _ KCVT/G(T) exp(_ﬁVAG) (2.4.107) K(s) = d*x/ds? (2.4.113)

The ratio in the above equation accounts for the different The reaction path curvature may be calculated by formulas

thresholds in ICVT andiVT as compared to CVT. given elsewheréd”-3%For a bimolecular reaction of the type

In practical work, the transmission probability is evaluated ~* + BC — AB + C, where A, B, and C may be atoms or
semiclassically, which is known to yield results withit1 5% groups of atoms, we define the skew angle as the angle
of the accurate quantal valu#8:5°51%The theory takes its between the A-to-BC vector and the C-to-AB vector. This
simplest form when the curvature of the reaction path is angle (in isoinertial coordinates) is given by
smalP®°51 because under that condition it is a good ap-
proximation to assume that motion is vibrationally adiabatic p= cos?t MaMe (2.4.114)
along the entire tunneling path. Then the effective barrier (Mmy +mg)(me+mg)
for ground-state tunneling is given b@(s), the maximum
value of which is calledVi® or VAG. The semiclassical ~The skew angle is related to the reaction-path curvatut® by

probability for energies below”® is given by

+oo dx®  [dx”  dxT) dx®

SAG/=y -1 [f_ » K(9)ds]— - = (_ - _)_ =~ (1+cosp)
P>"™(E) = {1+ exp[2(E)]} (2.4.108) ds ds ds/ ds (2.4.115)
whered(E) is the imaginary-action integral where xR and xP are the geometries in the reactant and
product valleys, respectively.

From eq 2.4.114, it is clear that the skew angle lies in the
range 0< 8 < z1/2, and thus the absolute value of eq 2.4.115
which is 27 times the magnitude of the imaginary action is between one and two. Thus, small skew angles and

integral between the classical turning poists(reactants  therefore large curvature occur whem is much smaller

0(E) =h™" [ {2u[V5(s) — E]}Y*ds (2.4.109)

side) ands- (products side) of the effective potential. than my and me. Marcus and Coltrif#3 optimized the

To carry out the Boltzmann average, one also needs totunneling path for a collinear atoatiatom reaction semi-
evaluate the tunneling probability at energies> VA° to classically and found that reaction path curvature leads to a
incorporate nonclassical reflection. If the potenﬁ@ is negative centrifugal effect, i.e., the particle “cuts the corner”

assumed parabolic around its maximum, the semiclassicaland moves toward the inside of the MEP. This motion
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shortens the tunneling paths thereby increasing the tunnelingstraight-line path. The integral is divided into three parts that
probability. correspond to three different regions along the straight
If the curvature is small, it is possible to treat this effect tunneling path. Region | corresponds to an adiabatic region
of the reaction path curvature by using an effective mass where the information needed to evaluate the imaginary
for the reaction-path motion. Specifically, this effective mass action integral can be extrapolated from information along

is a function of the reaction path curvatdfe>1514The final the MEP in the reactant valley, Region Ill is similarly related
version of this approacdh-492515s called the small-curvature  to the product valley. Region Il corresponds to a nonadiabatic
tunneling (SCT) approximation, and the effective mass is region and the contributions to the imaginary-action integral
given by from this region are calculated from the actual potential at a
1 ~ point on thg tunneling path (with_out any qL_Jadratic potential

_ - exp[—2a(s) — [a(s)]2 + (dt/ds)z} approximation) and from correction potentialg that take
ws) = u |_| min into account the zero-point energy of the modes that are still

m=1 (2.4.116) within their turning points at the boundaries of Region II.

_ Version 4 of the LCT method, also called the LCG4
wheret(s) is a suitably averaged value of the mass-scaled method02523uses more stringent requirements than version
normal coordinatei, at the zero-point-energy turning point 3 (also called LCG3) for a point to be considered in the
of modem on the concave side of the MEP, aa) is a  vibrationally adiabatic region. The LCG4 transmission factors

suitably averaged value of are always smaller than or equal to the LCG3 transmission
. factors. Although the LCG4 method is currently recom-
an(S) = ~ K S)(S) (2.4.117) mended as the default large-curvature tunneling method, it

not always more accurate than LC3.
The final result includes tunneling into a set of states in
which a vibrationally diabatic mode of the products is
excited{*402and the tunneling probability is appropriately
&iniformized?0t.402.52L

Figure 4 shows the different kinds of tunneling paths to
illustrate the above discussion.

wherek(s) is the component of the reaction-path curvature 'S
vector(s) in the direction of moden. Note that the corner
cutting due to the negative centrifugal effect raises the
tunneling probability, contrary to earlff assumptions. This

is because the path is shortened but not enough to raise th
effective potential for tunneling. If one cuts the corner in
any mode by more than the distance to the vibrational turning
point, this would not be true.

The SCT approximation breaks down when the reaction
path curvature is large, and corner cutting is so severe as to 4
raise the effective potential or cause the breakdown of the
sul,u2,... coordinate system. When corner cutting is severe
the SCT approximation can seriously underestimate the
tunneling probability. The large curvature tunneling (LCT)
methodg?3:401.402,517524 \yere developed to evaluate transmis-
sion factors for these types of reactions. In these methods, g&
series of tunneling energids,, are considered with values &
less than or equal tyAC. During the approach stage of a #
given collision, the reactants are treated as if they proceed
vibrationally adiabatically. This is not correct if one is
concerned with state-to-state reactivity, but it does not cause
significant error in the cumulative reaction probability. This
vibrationally adiabatic treatment is applied along the MEP
in the exoergic direction until the tunneling energy matches 2 4 5
the vibrationally adiabatic potential curve, that is, x, (bohr)

-
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~\ Figure 4. Contour plot of a model bimolecular reaction that
V:(So) = Eun (2.4.118) indicates the possible tunneling paths at a given tunneling energy

- . . . . . as discussed in Section 2.4.4. MEP is the minimum-energy path,
where$, < 0 is the classical turning points of the reaction- SCP is a schematic small-curvature tunneling path (actually, the

coordinate motion on the reactant side. In the next stage of T approximation does not correspond to a uniquely defined path),
the collisions tunneling is assumed to occur, without assum- LCP is a large-curvature tunneling path, and LAP is a least-

ing vibrational adiabaticity, along the reaction path and along imaginary-action path.

straight-line paths that connect the reactants valley turning )

point to a products valley turning point. Specifically, the  Liu et al®??applied the LCG3 method to the €f CD;H

linear paths connect the poi& on the reactant side to a — CRH + CDs and Ck + CDH — CRD + CDH

point & > 0) with an identical value of eq 2.4.118 on the reactions. (A later study with a more accurate potential

product side. function found less tunneling for this reactiet). They found
The primitive tunneling amplitudeT(%) along the that for these systems the reaction occurs mainly Fhrqugh

straight tunneling path initiating a% is approximated large-curvature tunneling paths with a small contribution

semiclassically as (around 1%) of tunneling into vibrationally excited states of
the products. It is interesting to notice that for evaluating
Tun(3) = exp[-0($)] (2.4.119) kinetic isotope effects the representative tunneling path (the

dominant path at the energy at which the integrand of the
in which 6(%) is the 1D imaginary action integral along the numerator of eq 2.4.103 has a maximum) may be close to a
path and is given by an imaginary action integral over the large-curvature tunneling path when the hydrogen is trans-
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ferred but to a small-curvature tunneling path when the to the usual assumption, but it does not exclude the possibility
transferred atom is deuterium. Furthermore, even for a giventhat nonequilibrium effects could be more important for other
isotope, the type of tunneling path that gives the most possible assumptions about the state-to-state reaction prob-
tunneling may depend on energy. To take account of this abilities and energy transfer probabilities. Nevertheless, it
possibility a new approximation for the transmission factor, is reasonable to assume that the local equilibrium of reactants
called microcanonical optimized multidimensional tunneling is maintained for the case of simple barrier reactions that do
or uOMT, was introduced? This transmission factor is  not proceed on every collision.

obtained at every energy by taking the maximum of the SCT In analyzing experimental data, some workers set the

and LCT tunneling probabilities, i.e., experimental rate constant equal to eq 2.4.35 without a
transmission coefficient. This produces a phenomenological

oMT P-T(E) free energy of activation with two kinds of contributions:
P (E) = ma PSCT(E) (2.4.120) the quasithermodynamic contribution of eq 2.4.35 and

another contribution called nonsubstantfl*8%545The qua-
In principle the “most accurate” transmission factor would sithermodynamic part is related to partition functions by
be obtained, at every energy, by finding the path that quasithermodynamic generalizations of the equations for
minimizes the imaginary action integfaf. This least-action ~ chemical substances and, as may be derived from the
path would be a compromise between the energetically mostquasiclassical analogues of eqs 2.4:2#.36, it may be
favorable path along the MEP and the energetically less written
favorable but shortest path, which is included in the LCT ovr
calculations. The evaluation of the least-action path involves + . VT Q"' (M
a search that can be computationally expensive .l T AGT) = V(s ) — RT ln(bR(T)K:t,o (2.4.121)
transmission factors are less computationally intensive, and
it has been shown by an extensive comparison with accurateyhere the nonsubstantial part may be written
quantum chemical thermal rate constant calculations for
atom-diatom reactior8® that they are accurate enough AGE, (T) = —RT Iny(T) (2.4.122)
for almost all practical work, although a recent stéf@y
Zgg\ljvrz(tjethat sometimes the full least-action method is more » 4 5 Improvements in VTST Methodology

Recently, it has been possible to extend these tests of the In this section, we consider two kinds of improve-
#OMT tunneling approximation to reactions of larger ments?®? (1) more general dividing surfaces based on
molecules by comparing to calculati§h&75%%hat provide curvilinear coordinates or optimizing the orientation of the
numerically converged quantum dynamical rate constants for dividing surface, and (2) interpolation schemes that improve
a given potential energy surface. TROMT results are in  theé computational efficiency of the method.
excellent agreement with the quantum ones fot I€H; — In Section 2.4.2, we assumed a planar (hyperplanar)
H, + CHs, which has a skew angle ¢ = 47 deg and is dividing surface, but in many respects this is unsatisfactory.
dominated by small-curvature tunnelif@g:5*°and in good First of all, a hyperplane in coordinate space does not always
agreement for G- CH,, which has3 = 20 deg and for which ~ Separate reactants from products, even if it intersects the MEP
tunneling is better taken into account by the large-curvature at a right angle. This usually does not cause a problem though
approximatiorp3! if we use physically correct models for partition functions,

A tunneling mechanism not included in the above discus- Such %?4;?9 harmonic oscillator model or the Morse
sions is tunneling enhanced by resonances below the quamodel>*>

siclassical threshold energy; this subject has received con- A more serious problem is the nonphysical nature of the
siderable recent attentiG542 vibrational frequencies for planar dividing surfaéé&sThis

Next we turn attention to the factoXT) in eq 2.4.93. In  €an be circumvented by using curvilinear coordinates defined

TST it is assumed that the observed one-way rate constantd terms of valence coordinates (bond stretches, bends, and
should be well approximated by the one-way rate constantstorsions) to define the dividing surfat®:>*¢>*This yields
corresponding to internal states of reactants being at equi-more physical harmonic frequencies and is therefore often
librium. By Liouville’s theorem, if reactants have an equi- mMore important than including anharmonicity. Recently, in
librium distribution then this distribution should evolve to @ Very significant advance, a procedure has been developed
an equilibrium distribution in other parts of the phase for aIsp including anharmonicity when using such curvilinear
space® such as, for instance, the transition state, and the coordinates?® . B . _
“quasiequilibrium assumption” of the TST holds. Actually, A third problem when using curvilinear reaction coordi-
for gas-phase bimolecular reactions the TST provides annates (and hence curved dividing surfaces) is that equations
upper bound to the observed rate constant if collisions aresuch as 2.4.25, 2.4.28, 2.4.31, 2.4.34, and 2.4.35 are no longer
efficient enough to maintain the thermal distribution of Strictly valid. One must also include a Jacobian factor to
reactants. A quantitative estimate of the effect of internal- account for the curved nature of the dividing surfa€e®!

state (rotational and vibrational) nonequilibrium on the rate For d|V|d|ng surfaces defined in terms of valence coordinates,
constants for the fast, bimolecular, reversible hydrogen- the factor is reasonably close to unit=t

transfer reaction VTST is much less time-consuming than trajectory
calculations, and, when tunneling is included, it is usually
Cl+HBr==CIH + Br more accurate. However, VTST calculations (like trajectory

calculations) can still be expensive if the system under study
was carried out by Lim and Truhl&t Those authors found s big, since VTST requires the evaluation of gradients and
out that nonequilibrium effects for this reaction are negligible Hessians at more than just stationary points (whereas
when product concentrations are negligible. This conforms trajectory calculations require extensive sampling of initial
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conditions and long time integrations). Several techniques points, in particular, the saddle point and two stationary
have been developed in the past few years to reduce thepoints, one on each side of the MEP. If corrections were
number of electronic structure calculations needed for VTST made at nonstationary points, they would be based on
and tunneling calculations without loss of accuracy. reaction paths calculated at the higher level. The interpolated
One technique involves the reorientation of the dividing optimized energies (IOE) approach is a particular case of
surface (RODS) to maximize the free energy at each IOC in which only the energies and moment-of-inertia
calculated point. The RODS algoritlth considers trial determinants are corrected, but the corrected energies are
dividing surfaces that are hyperplanesxmand that pass  based on geometries optimized at the higher level. Finally,
through a point on a reaction path, which need not be aif the correction is based on single-point energies using
converged MEP. The orientation of the dividing surface (with higher-level electronic structure calculations, the method is
normal vectom) is optimized to maximize the free energy called VTST-ISPE (VTST with interpolated single-point
of the generalized transition state at a given point along the energies). Gorizaz-Garca et al**> used the ISPE dual-level
MEP. The standard-state optimized generalized free energymethodology to study the dimethyl sulfoxide reaction with
(corresponding to optimized generalized transition state OH. This important reaction in atmospheric chemistry has

theory or OGT) value is given by three possible products. The global rate was obtained by
applying the CCUS theor§2 The CUS theorsp3494.556.557
GOGT’O(T) = ma)GGTvO(T,ﬁ) (2.4.123) was employed to calculate the thermal rate constants for
A

individual reactions because the free energy profile shows
several dynamic bottlenecks.

_ Of all the methods that allow greater efficiency, probably
the most promising is the MCMM meth&d21424!described

in Section 2.3, because it accurately reproduces the stationary
points, it can be used with large steps, and it can be improved

This algorithm can be combined with the traditional Euler
steepest-descent algorithm to calculate accurate and compu
tationally efficient VTST rate constants using large step
sizes?® Although in principle this algorithm should give
more accurate results because of the greater degree of optimi . . . ;
zation of the dividing surface, the main effect is actually to Egn\?grdlggcénicr)l r(tahepcc):lgltcsulgc;eéhfhe'\rﬂrr?; rg?em one obtains
eliminate instabilities in the calculated reaction path and X 9 . i X )
generalized normal-mode frequencies and to allow efficient It iS also possible to use interpolation methods to evaluate
calculations with larger step sizes. At low temperatures this the large curvature transmission factors. In computer time,
procedure leads to rate constants converged16% with the most expensive part of the evaluation of this kind of
a step size of around 0.G, whereas at high temperatures transmission factor is the calculation of energies in the
a step size of around 0.5 is enough to get rate constants nonadiabatic region, because .smglg-pomt energy calculations
with the same degree of precision as the full calculation. are needed to evaluate the imaginary action integral. The

Another possibility is to use an interpolating function over COMputer ime can be reduced by using a spline under tension
a given number of points along the MEP. One approach to interpolate the linear path within the nonadiabatic region.
called interpolated variational transition state theory by This algorithm is called interpolated large curvature tunneling

mapping (IVTST-M)2 interpolates the potentialyeq(s), in one dimension (ILCT1Dj?® Tests carried out on five
the determinantl(s)| of the moment of inertia tensor, the bimolecular reactions indicated that the ILCT1D algorithm
frequencieson(s), and the curvature compone@se(s) not reduces the evaluations of the LCT transmission factors by

as functions ofs but as functions of, wherez is a new  aboutfive times, with results similar to the full calculations.

variable that always has a finite value (in a bimolecular AN €ven less expensive algorithm (in computer time)
reactions has infinite values< o and+ «) at the reactants involves using 2D interpolation to interpolate not only along

and the products). The parametsis determined as the linear path variabl€, but also along different tun-
neling energies. The calculated points are interpolated by
2 s—s a 2D spline under tension. This metl&dis called
z= y—rarcta 1 (2.4.124) ILCT2D. It has been tested for several CfFaydrocarbon

reactions and is about 30 times faster than the full LCT
algorithm and about 5 times faster than the ILCT1D method
with an average deviation from the full LCT results of less
than 1%.

with s, and L being two parameters obtained from the
forward and reverse barrier heights. The néyer(2), [1(2)],
om(2), andBng(2) functions are interpolated by using splines
under tension.

Instead of using functions to interpolate the calculated
electronic structure points it may be better to interpolate them Variational transition state theory may be derived by
with a MEP obtained from low-level electronic structure assuming that vibrations transverse to the reaction coordinate
calculations. One method based on this dual-level approachare adiabatié®>42°-5%lthough it is not necessary to assume
is variational transition state theory with interpolated cor- vibrational adiabaticity to derive VTST. Hofacker was the
rections (VTST-IC)5:55% |n this method, correction pro-  first to make a detailed study of the vibrational adiabaticity
cedures are applied to the calculated energy, frequenciesand nonadiabaticity of the modes transverse to a reaction
and moment-of-inertia determinant along the MEP. The coordinate’®® Wu and Marcus continued this wo?k Since
corrections are calibrated such that the corrected resultsthen the concept has been widely invoked. Assuming a
match the accurate values at those selected points, and theguantitative requirement for zero point energy of streéfcii®
correspond to interpolating these corrections at other points.and benéP vibrations can be quite accurate in the threshold
When the corrections involve data from higher-level opti- region that controls thermal bimolecular rate constants.
mizations of the stationary points, the method is called However, stretch vibrations are only approximately adiabatic
VTST-IOC 5% a special case of VTST with interpolated in a global sense, even when the reaction appears to be vibra-
corrections. This method is based on the correction at threetionally adiabatic in terms of initial and final stabé%°63.564

2.4.6. Reduced-Dimensionality Theory
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and bending vibrations are more complicated; the latter show Table 4. Prototype Applications of VTST/MT to Gas-Phase
propensities (but not strict selection rules) to couple to Bimolecular Reactions

selected asymptotic rotational quantum numis&rgss 567 MT _

Based in part on their success in transition state theory, method reaction ref
vibrational adiabaticity and the separable rotation approxima- zZCT  OH+ CHyCH.F — CH;CHF + H,0 603
tion are sometimes used to reduce the dimensionality in non- SCT  H+ SiCly — SiCl; +HCI 622
TST calculations. Several combinations of these and other H+ CoHy —~CoHs 612

H : : H B - H+ C2H58|H2 "CgHsSIH +H 633
approximations, including also sudden approximations, that H + NFs — NF + HF 616
reduce theGglgL(;zPZssl‘?galzlgg 5r(;z;g;ctlve collisions have been H + (CHs)sGeH— (CHs):Ge+ Ha 626
developed't:213231,234,237,245,257, C_:Iary qnd go-workers H + (CHy)sGeD— (CH;),Ge+ HD 625
have developed general reduced-dimensionality methods for H + (CH3CH),SiH, — (CHyCH,),SiH + H, 636
atom—molecule reactions that treat the dynamics in 2 or 3 O|+ CH3C'|"F2_’CH|3CF2 +|OH 638
active degrees of freedom and assume vibrational adiabaticity Cl+ CHLCl = CH,CI + HC 6ar

X X . Cl + C,HsCl — CH3CHCI + H'CI 649
with no curvature coupling to the active degrees for the other CI- + CHs— CICHs + CI'- 164
qegrees Of freedorﬁ.a,231,234,245,257,591,592,594,597,ﬁ.ﬂhough it cl- + CHgBI’—’C|CH3 4 Br- 600
is an advantage to use full guantum mechanics rather than OH + HCl—C; + H;0 602
semiclassical approximations in the active degrees of free- OH + D,0— 0D + HDO 610
dom, the neglect of curvature coupling in all but a few 831%2;;"_?8&: '1'330 gig
degrees of freedom may make the tunneling calculations less e L

: . . . OH + CHsCl — CH.CI + H,0O 647
accurate than the SCT and LCT approximations, with which OH + CHsSH— CHsS + H,0 631
direct dynamics calculations have been applied to systems OH + CH3;0CIl— CH,OCI 4+ H,0 644
of similar size as those in the reduced-dimensionality OH + CH;C(O)CH; — (CH3).C(O)OH 627
calculations and also to larger systems (see Section 2.4.7). 8: I f.%'é)ZSICHf)](EHﬁ)Cz)%H JCF gioH o gig 643
A convenient advantage of VTST/MT over reduced- OH + (Cyclg'zcsﬁs))CH(CFb)zt% z 648
dimensionality approximations is that the same formalism (cycloC:He)C(CHy)2 + H-0
can be applied to different kinds of reactions, e.g., both H HF + H.SILIF — H3SiF + LiF 646
+ C,H; — C,Hs and H+ C,Hg — H, + C;Hs. Nevertheless, CH + Hy—H + CH 614
the reduced-dimensionality method of Clary and co-workers QSZI SHiOH_fg,_?JF HONO fgg
is a major advance in systematic methodology for dimen- CHe + CH.0 — CHO + CH 635
sionality reduction, and it can also be applied to certain state- CH; + (C|-2|3)20ﬂCH30C|-1|12 + CH, 630
selected processes. CHs 4+ C;HsOH — CH;CHOH + CH, 639
. , . CHsCI(H20) + NH3(H.0) — 605
2.4.7. Direct Dynamics Calculations (CHsNH;)(CI™)(Hz0)
i i ) , CeHs + (CHs3),CO— CH;C(O)CH, + CeHs 632

Direct dynamics with VTST/MT has now become awidely oMT H+ H,S—HS+ H, 615
used method for calculating rate constants of bimolec- H+ CH;—CHs + H; 624
ular reactions in the gas phase without dimensionality H + CHyOH —~ CH,OH + H; 611
reduction. Although the present review is mainly con- H + N2H, —~ HoNNH + Hy 549
cerned with methodology, and not with complete lists of O+ CD4—~CD, + 0D 007

ed \ 9y, an P F + CH,— CH + HF 64T
applications, Table 4 provides some prototype ex- Cl + 3CH, — 13CH; + HCI 606
ampled62.164,210,214,235,522,523,549,551:8680 of gpplications of Cl + CoHg— CoHs + HCI 403
VTST/MT to reactions with rate-limiting potential energy OH+ H,—H + H0 623
barriers. OH + NHz —NH, + H,0 601
OH + CHsF — CH.F + H,0 608

- OH + CH,F2— CHF, + H,0 621

2.4.8. Fully Quantal Calculations OH + CFR:CHs — CE.CHs -+ H,0 618

In addition to the approximate calculations discussed so 8: I gﬁé—;(gFH;)chH g H20 éig

far, one may also calculate rate constants by converged . 2

i . OH + CgHig— CgHi7 + H;0 613
quantum mechanlc_al scattering theory or converged quantum HBr + HCCH— H,CCHBr 604
statistical mechanic¥:*>%8 These results are exact within CH+ H,—CHz + H 614
some numerical tolerance for a given PES, although usually CH.CI + CHzF — CH,F + CHsCl 210
only for total angular momentum equal to zero; contributions Fongg) JOIC:ZHSS' Teor 609
to the rate constant from higher total angular momenta can c i “CD H _,((':':23 ZFCH 522 524 551

- - imafibSo Fs 3 3 R ) ,

be obtained by the separable rotation approxim 0 CF; + CoHg — CoHs + CHRs 524
far such calculations have been limited to systems with six CF; + CgHg — (CHg):CH + CHF; 524
or less atoms. We especially call attention to prototype CoHy + CaHe — CeHio 620
calculations for H+ Hy, — Hy + H,53652654 D + H, — DH N2Os + HaO —2HNGs 634
+ H,855656 C| + H, — HCl + H,%7 O + HD — OH + D OH + CHR —CRs + H0 650
and OD+ H,%8 OH + H, — H,O + H,57:659661 4 4 CH, aSee also an SCT calculation in ref 23.

— H, + CHj,%52663and O+ CH; — OH + CHj5.%54
Even with modern computer capabilities, direct calculation CO, reaction®®® Therefore, the calculation of rate con-
of enough state-selected reaction probabilities or rate con-stants from the cumulative reaction probability or the flux
stants to compute a thermal rate constant by Boltzmannautocorrelation functions is preferred for larger sys-

averaging over reactant states is very expensive for four ortems>+56:57,659,662664,666-671
more atoms, especially with two or more nonhydrogen atoms, The time correlation function approach is well suited not
as illustrated in a recent paper on the GHCO — H + only to gas-phase reactidfs>7:652,654.655.658.66671 [t also
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to condensed-phase dynami&$726% as discussed in  products. Each intermediate isomer and each bimolecular
Section 4.1. reactant or product is called an arrangement or a configu-
As discussed in Section 2.4.4, for H CH, and O+ ration, and each interconversion between two arrangements
CHg, VTST/MT calculations are in good agreement with is called an elementary step. This is the case we want to
converged quantal ones where the same PES isconsider in this section. A recently studied reaction with an

useq:?9-530664 energy profile like Figure 1d is H- S,.5%° The number of
_ _ _ possible arrangements increases rapidly with the total number
2.5. Bimolecular Reactions over Potential Wells of atoms, but even a five-atom system like HGONO7°

can have an energy diagram much more complicated than
Figure 5a. Reactions with both a barrier and wells (inter-
mediates) are particularly interestifg,and they may show
multimodal lifetime distributions and other manifestations
of nonstatistical behavidP?! but in this section we focus first

on barrierless reactions.

Bimolecular reactions come in a number of different
varieties, as illustrated in Figure 5. The simplest case is

2.5.1. RRKM Assumption

The first step to treating a multiple-well, multiple-
arrangement reaction theoretically is to treat the com-
ponent elementary steps individually. Transition-state theory
is used to calculate the rate coefficients for these steps.
This must be done at the microcanonical or microcanoni-
callJ-resolved level, wherd is the total angular momentum
guantum number. A microcanonickiesolved ensemble
takes explicit account of the dependence of reaction rates
on total energy or total energy and total angular mo-
mentum. These transformations from one arrangement to
another are, broadly speaking, of two types: those where
_ _ _ ) there is an “intrinsic” barrier between the configurations and
'r:elglétrgnltsé- E'gg{%’t‘és%eﬁzu%ftsb'mO'eC“'ar reactions. R denotes hqge where there is not; both possibilities are indicated in

’ ' the diagrams of Figure 5. By the term intrinsic barrier, we

shown in Figure 5a, where only a simple barrier separates améan a potential energy barrier in the exoergic direction.
set of bimolecular products from a set of bimolecular FOrisomerizations that have a barrier and for fragmentation

reactants. For such reactions, which have been the soledfacomplex to a radical plus a molecule in which the reverse
subject of our discussion up to this point, the rate coefficient @ssociation has a barrier, the transition-state theory methods
is a strong function of the temperature but does not dependdiscussed above can be used directly. For fragmentation to
on the pressure. However, a common occurrence is that one2 Pair of radicals in which the reverse association has no
or more potential wells lie along the reaction path, and this barrier, special methods are required. We describe these
introduces a number of complications in the theoretical Methods below. But first we consider the basic assumption
analysis. In the presence of a well the reactants can form athat holds the multiple-well, multiple arrangement theory
long-lived collision complex, which can survive long enough together.
to suffer a number of collisions before it decomposes back The fundamental idea that underlies this theory is known
into reactants or into products, perhaps resulting instead inas the RRKM assumption or the strong-coupling approxima-
stabilization of the complex in the well. The simplest such tion. This is an assumption about the nature of the dynamics
situation is shown in Figure 5b, where the complex has only of the collision complexes while they are in the well regions
the options of reforming reactants or being stabilized. Simple of the potential. It is most easily described and understood
models for the association rate were discussed in Sectionfrom a classical (rather than quantum) perspective, although
2.2.2 of this review, but such reactions are normally treated it may be more valid in a quantum-mechanical system than
as the reverse reactions of unimolecular decompositions. Forin a classical one. The RRKM assumption says that the
these and more complex reactions, the rate coefficient is adegrees of freedom of a highly excited, isolated molecule
function of both temperature and pressure (or temperatureor collision complex are so strongly coupled that, no matter
and number density). how localized in phase space an ensemble of such complexes
The next level of complication involves adding a bimo- is prepared, the ensemble will evolve to fill the entire phase
lecular product channel to the association reaction just space available to itniformly(consistent with conservation
described, shown in Figure 5c. In this case the collision of energy and angular momentum) on a time scale much
complex can have one of three fates: stabilization, dissocia-smaller than the characteristic time for reaction (i.e., for an
tion back to reactants, or dissociation to bimolecular products. elementary step). Each step thus takes place exclusively from
Recently studied examples with reaction profiles of the form a microcanonical/fixed-ensemble (frequently approximated
of Figure 5¢ are F + (CH3),SC% and O+ OHS896.697 for simply by a microcanonical ensemble). This is illustrated
the case without potential energy barriers and,SiHHCI5%8 schematically in Figure 6. The isolated pockets of complexes
for the case with barriers. The most general case one caron the left of the figure might correspond to depositing
imagine is illustrated in Figure 5d; it includes the possibility energy in a particular bond or normal mode of the molecule,
of the complex isomerizing to another complex (perhaps or they might correspond to isolating the complexes near a
multiple times) before it is stabilized or it decomposes, either transition-state dividing surface through which they were
back to reactants or to one of several sets of bimolecularformed. The subsequent trajectories of the complexes are
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2.5.2. Variational Transition State Theory for Barrierless
Addition Reactions

Products The absence of a potential energy barrier for the initial
association step of a radiealadical or ion-molecule
reaction presents certain complications in the application of
transition state theory. First, a variational implementation of
transition state theory is essential due to the wide variation
in the location of the dynamical bottleneck with temperature.
Furthermore, a number of the modes transform from free
rotations to hindered rotations to librations and eventually
to rigid bending vibrations as the system passes through the
transition state region, and this phenomenon is typically
associated with large vibrational anharmonicity and vibra-
tional Coriolis coupling. Although for a few reactions, such
as CH + H, decoupled 1D treatments have proven effec-
tive,”1 in other instances, decoupled rigid-rotor harmonic-
oscillator treatments (as presented in Section 2.4.2) are highly
inaccurat€!? Thus, in general, an accurate treatment of the
anharmonicities and the couplings between the various
Products modes, including the reaction coordinate and overall rotation,
is a prerequisite for reliable predictions.
The absence of a barrier also makes some simplifications
possible. For example, quantum tunneling effects are usually
t=0 not important for calculating the thermal rate constant. Also,
Figure 6. Schematic diagram illustrating RRKM dynamics in  in the transition-state region the two reacting fragments are
phase space. The timg is the characteristic time for reaction to  ftan interacting only weakly. As a result, an approximate
oceur. separation of modes into the “conserved” modes, corre-
u o . . . . sponding to the vibrational modes of the fragments, and the
chaotic,” with the ensemble rapidly becoming uniform in e\ 5ining modes called “transitional” modes, corresponding
the accessible phase space of a given well. to the relative and overall rotational modes, can be used to
The RRKM assumption is that the reactant of each simplify the analysis. The reaction coordinate, corresponding
elementary step is in microcanonical equilibrium; therefore, to the relative translational motion of the fragments (i.e., the
the same reaction rates result no matter how energy isinterfragment separation) is either considered separately or
deposited in a molecule (or complex). It is thus possible to as part of the transitional modes. (As usual, the overall
define universally applicable elementary rate coefficients translational modes are ignored since they factor out of the
K(E,J), or k(E), and to bypass the problem of computing the problem.)
intramolecular dynamics of the complexes entirely. Thisis  This approximate separation of modes is particularly
an enormous simplification. A consequence of the ap- valuable in allowing for a classical treatment of the transi-
proximation is that an ensemble of complexes will have an tional modes, while maintaining a quantum treatment of the
exponential lifetime distribution with a/@ decay time (or  conserved modes. A quantum treatment of the latter modes
lifetime) of 1k(E,J). The classical dynamical implications is essential due to their generally quite high vibrational
of RRKM and non-RRKM behavior have been discussed at frequencies. In contrast, the low-frequency nature of the
some length by Bunker and Hd%and Has€?"%who pay  transitional modes implies that treating them purely classi-
particular attention to the effects of non-RRKM behavior cally is acceptabl&® Importantly, the classical treatment of
on lifetime distributions. the transitional modes facilitates the treatment of their
The RRKM assumption is generally very good and is anharmonicities and moegnode couplings via phase-space
expected to get better as the depth of the potential well overintegral descriptions of the partition functiofts.
which the motion takes place increases. A noteworthy Atthe canonical level, this assumed separation allows one
example of the failure of the RRKM assumption is the to evaluate the transition state partition function as the
reaction H+ O, = OH + O, where the high-frequency-€H product of the conserved mode and transitional mode
vibration does not couple very strongly to the low-frequency partition functions:
O—0 motion in the H@ complex’®7% However, such
failures are likely to be limited to three- or four-atom systems QM) = Qs ncervelN R ansitional T (2.5.1)
with similar frequency mismatches. Even a methyl group

often provides enough anharmonicity to promote efficient |5 ¢q 2.5.1, the double dagger superscript denotes evaluation
intramolecular energy transfer. However, there also appearat the variational transition state, which is where the product
to be occasional failures of RRKM theory in dissociations gn the right-hand side assumes its minimum value, if we
of larger molecules such as @FH; '’ the chemically  keep the zero of energy at reactants. Although eq 2.5.1 is
activated dissociation of acetone catf6hand the confor-  qyite useful for calculating the high-pressure limit, the study

Products

mati7012al isomerization of cyclohexanorfésand of a dipep-  of the pressure dependence of the reaction kinetics instead
tide.”™® In any case, we assume that such failures are therequires the implementation of transition-state theory at the
exception rather than the rule. microcanonical level or at the microcanonidaiésolved

The combination of the RRKM assumption and transition- level. The transition-state partition function then corresponds
state theory is frequently termed RRKM theory. to the number of available (i.e., energetically accessible)
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states, which may be obtained by convolving the number of The variableR should not be confused with the gas constant
available states for the transitional mod®&ansitonas With R (used above) or the coordinate &ealso used above). In
the density of states for the conserved mo@@sserved eq 2.2.17 and the rest of Section 2.2Rwas calledr;
however, we have changed the notation in this section for
N*(E,J) = fEdENﬁ'ansitiona(ei ‘J)pt:fonsen/eQE —€) (2.5.2) better correspondence with some of the key references of
0 this section.
The energy for the transitional mode motion on the
transition-state dividing surface is given by the sum of the
effective centrifugal energy and rotational energies for each

The microcanonical rate coefficient, required for the master
equation analysis of pressure dependent effects (which is
presented below), is given by the standard microcanonical

TST expression, which has the fot#h of the fragmentsEmt(ji,Ig), whgrej! andk; are the rotation_al
guantum number and its projection on a body-fixed axis for
Ni(E) fragmenti. The effective centrifugal potentiaVex(R), is
K'(E) = ——= (2.5.3)  given by
he™(E)
_ _ RA( + 1)
for a bimolecular elementary step, whefis the reactant V(R =V(R) + ———— (2.5.7)
density of states per unit energy and volume for the reactant, R

15,716
and the RRKM forrf whereV(R) is the isotropic fragmentfragment interaction

NHE energy,u is the reduced mass of relative translation, &nd
k*(E) = (E) (2.5.4) is the orbital angular momentum quantum number.
ho"(E) The assumption of an isotropic interaction implies that

is a conserved quantum number and therefore the reactive
for a unimolecular elementary step, whes&E) is the flux can be minimized for each separatealue. In PST the
reactant density of states per unit energy. In both of thesefragment rotational energies are assumed to be independent
equationsN*(E) is the number of states of the variational of R and |, and conserved-mode energies are assumed
transition state at energies less than or equaEtdrhe constant forR greater than its value at the transition state

microcanonicall-resolved analogues are dividing surface. Then the variational minimization reduces
. to locating the position of the maximum in the effective
K(EJ) = N*(E,J) (2.55)  Potential, with corresponding effective potential valgg
' heR(E,J) e For the most general case of two nonlinear rotors the phase
space theory transitional mode number of states can be
and written as
T Ntransitiona E,J — A J,',I A -,- ’-
K(EJ) = NR(E,J) (2.5.6) PST (E.J) %%%%Z (JiDAG 1i2)
ho™(E,J)

O[E - Eroti(Jl'kl) - Erotz(JZ!kz) - Eli] (2.5.8)
where now the numbers and densities of states are restricted
to a particular value od. To keep the presentation manage- where® denotes a Heaviside step function, and the first two
able, we will focus on the bimolecular case and eq 2.5.5, terms on the right-hand-side denote triangle inequalities, with
but similar considerations apply to all four of these equations. j being the angular momentum quantum number correspond-
Some aspects of the coupling of the conserved modes toing to the vector sum of the fragment rotational angular
the remaining modes are sometimes treated in an approximatenomenta.
fashion. For example, the conserved mode vibrational The PST expression for the number of available states can
frequencies and molecular geometries vary with the reactionalso be obtained from an adiabatic-channel perspective where
coordinate. When this variation is ignored, the conserved one considers the number of adiabatic channels whose energy
mode contributions need to be evaluated only for infinitely barrier is below the energl.”26728 In fact, fully adiabatic
separated fragments, rather than separately for each transitheories, where the channel numbers are labeled only
tion-state dividing surface that is considered in the variational according to their energy, provide identical rate coefficients
optimizations. Furthermore, the conserved mode contribution to fully statistical transition state theori&8 Direct sums such
to the canonical transition-state partition function then cancels as eq 2.5.8 are readily evaluated computationally, particularly
with the corresponding contribution to the reactant partition when one realizes that for higher energies the sums can be
function in the evaluation of the high-pressure bimolecular considered as integrals with nonunit step sizes employed in
rate coefficient. their evaluation. Alternatively, the quantized formulas can
Phase space theory (PST) provides a useful, and easilybe replaced with classical phase space integrals, which yields
implemented, reference theory for barrierless reactith&? further simplifications’18.723.724
The basic assumption in phase space theory is that the Forion—molecule reactions long-range expansions of the
interaction between the two reacting fragments is isotropic potentials often provide an adequate description of the
and does not affect the internal fragment motions. This interactions in the transition state region. As discussed above,
assumption is only valid if the dynamical bottleneck lies at TST treatments for the ion-induced dipole potential yield
large separations where the interacting fragments have freethe Langevin rate. The ierdipole interaction is generally
rotations and unperturbed vibrations. The Gorin model, the next most important term in the potential. The locked-
discussed in Section 2.2.2, is essentially a canonical versiondipole/?*73%average dipole orientatiol 734 and effective
of phase space theory for &® potential, wherer is the potential methot#>"3¢provided early approximate treatments
separation between the centers of mass of the two fragmentsof the effect of the ior-dipole interaction on the capture
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rate. These treatments were largely superseded by thewhereQ.;, i = 1,2 are the rotational partition functions for
pioneering trajectory simulations of Su and Chesnav- the fragments, andl..[}; denotes an average over the space
ich.734737.73%Related rigid body trajectory simulations of the x. If the interaction potential is known, Monte Carlo
capture rate for neutral radicatadical reactions have integration provides a simple and efficient procedure for
provided useful indications of the limits of accuracy of evaluating expressions like eq 2.5.10. Analagous expressions,
transition state and adiabatic channel model calculati§rg? involving powers of E — V) or (E — V — E) have been
Gridelet et al*> have formulated two criteria for the validity — derived for the microcanonical and microcanonitad/solved
of arbitrary transition state theory for iemmolecule interac-  transition state partition functiori8? 752 These expressions
tions. can also be efficiently evaluated via Monte Carlo integration.
A recent long-range TS provides a unified treatment The evaluation of the transition-state partition function
of reactions on long-range potentials. Agreement with according to eq 2.5.10, or its microcanonical or microca-
trajectory simulations is generally very good. For example, nonicald-resolved analogue, has been termed flexible transi-
for the particular case of iendipole reactions the predictions  tion-state theory**7>3The earliest application of a flexible
agree with the trajectory results to within a few percent. This transition state theory-like model was provided by Chesnav-
long-range TST is applicable for moderately low tempera- ich and co-workers in their study of ierdipole capture3
tures, where the temperature is not so low that quantum Both phase space theory and flexible transition-state theory
effects are significant and not so high that the transition stateimplicitly assume that the reaction coordinate is the separa-
has moved in to separations where the long-range potentialtion between the centers-of-mass of the two reacting frag-
expansion is no longer applicable. Related, but more limited, ments. When the transition state lies at large separations,
results had been derived earlier from the perspective of this assumption is perfectly reasonable. However, at closer
adiabatic channel theorig¥.748 separations a more reasonable reaction coordinate is more
In reality, the interaction potential for radicaladical closely related to the distance between the atoms or orbitals
reactions is generally quite far from isotropic, and phase involved in the incipient bond. As a result, flexible transition
space theory provides only an order of magnitude estimatestate theory often significantly overestimates (e.g., by a factor
for the capture rate. For iefmolecule reactions the increased of 2) the reaction rate. A discussion of the relation between
strength of the long-range interactions results in a transition PST, flexible transition state theory, and a phase space model
state that lies at quite large interfragment separations, whereof Klots’>* is provided elsewher#®
the interaction potential tends to be more isotropic, and the In variable-reaction-coordinate transition state theory
association rate constant of phase space theory is often quitdVRC-TST) a more general reaction coordinate is con-
accurate, unless the molecular reactant is either highly sidered’>> 75" This reaction coordinate is specified by a fixed
nonpolar or nonspherical. In the special case of an ion- distance between two arbitrarily located pivot points, one
induced dipole potential, we can recover the Langevin on each of the two reacting fragments. When the pivot points
expression already discussed in Section 2.2. are placed at the centers of mass of the corresponding
Recent studies of the high-pressure limit of thgOH — fragments, flexible transition-state theory is recovered. When
H,O association reaction indicate that it is not dominated they are instead located at the atoms involved in the incipient
by ion—dipole forces but rather by the valence part of the bond, one recovers an approach that is more analogous to
potential’4° an expansion of the potential around the minimum energy
The effect of anisotropies in the interaction potential can pathy60:362:369.390.3%4.75yt with the possibility for a fully
readily be accounted for within a classical phase-spacecoupled anharmonic treatment of the transitional modes. The
integral description of the number of states. At the canonical variational minimization in VRC-TST involves as many as
level the classical partition function for the transitional mode seven parameters; the distarReand two 3D vectorsl®
motion on a dividing surface specified by a given value of andd®, connecting the center of mass of each fragment to

the separatiofiR may be written a@d3 its pivot point. Fortunately, the directions of the vectdf’
andd® are generally clear from physical grounds, and one
_1 needs to optimize only the three distances. In particular, the
Quansitional 'R) = h”f dQlZdQldQ?dlezdpgldsz x optimal pivot point generally lies somewhere along the vector

expl — [K + V(Q,, 2, R,k T} (2.5.9) gglnr;tel?gmfrict)g]rg:ﬁcztlo;]gir:;ﬁIved in the incipient bond to the

The incorporation of this variable reaction coordinate is
complicated by the fact that the reaction coordinate is no
longer separable from the remaining orientational coordinates
of the transitional modes. As a result, expressions like eq
2.5.9 are no longer applicable. Instead, one must return to
the original expressions like eq 2.4.17. For a canonical
ensemble this implies expressing the partition function as

whereQ; denotes the Euler angle8;i,x) describing the
absolute orientation in space of fragmern®;, denotes the
spherical polar angles describing the absolute orientation of
the line-of-centers connecting the centers-of-mass of the two
fragmentsK is the sum of the fragment and orbital kinetic
energies, and is the number of transitional mode degrees
of freedom excluding the reaction coordinate. The transition-

state partition function is obtained via minimization of eq dRdp o
2.5.9 with respect to the dividing-surface paraméter QT =5 —exXp[=A(K + V)]6(S— 5)SB(
The integrals over the momenta in eq 2.5.9 are readily h (2.5.11)

performed analytically to yield®

ZﬂﬂRsz dividing surface (so tha® is the reaction coordinate), and
}2 an overdot denotes a time derivative. (Note that one does
not need to specify a reaction path, just a dividing surface.)

@xp(—ﬁV(le,Szl,S!Z,r))@129192 (2.5.10) With eq 2.5.11, analytic integrations over the momenta are

. where 0 is the Dirac delta functionS = s specifies the
Qtransitiona(TvR) = QrotlQro'f2 )
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still possible, and, given the interaction potential, the resulting CH, + H; High Pressure
configurational integrals are again readily evaluated via " "
Monte Carlo integratior®% 765

At the canonical level the expression for the most general
case of two nonlinear rotors reducegtto

3.6 4

3.2 4

kBT 4 ,uSz 2 3
Q ransitional T,S) =2 { 27l i(k)} [P
ranst ( hz 7-1;2 I!:! D

exp(—AV(R1,921,2,))L (2.5.12)

28 ’ 4
Brouard et al.

Seakins et al. CH,+D
Seakins et al. CH,D+D
Seakins et al. CHD,+D

Su and Michael; CH,+D
—— VRC-TST ---- Trajectories

k (107"° cm® molecule™ s™)

wherel;® is the principal moment of inertiaof fragmentk,
s is the distance between the two pivot points, and the 2.0+
kinematic factord is given by

oA X eD

A

T T T T T
0 500 1000 1500 2000

2 3
D=, [1+u5 SN x d¥n®N® (2513 T 3
& - Figure 7. Plot of the CH + H high-pressure rate coefficient versus

temperature. The solid line denotes VRC-TST predictions, the
dashed line denotes trajectory predictions, and the various symbols

wheren? is the unit vector pointing from the second pivot denote experimental measurements

point to the first one, anah® is the unit vector directed
along the principal axis of the fragmenk. Again, similar spline and/or Fourier fits to grid-based ab initio calculations

expressions involving powers ifE(— V) or (E — V — E) provide an effective procedure for generating the potential.
have been obtained for the microcanonical and micro- The VRC-TST approach was used in a number of applica-
canonicald-resolved case®? 765 tions to radical-plus-H atom recombination reactiéits’¢®

The kinematic factor is unity for center-of-mass pivot lllustrative results from a stud$?:’"6of the CH; + H reaction
points and is otherwise greater than unity. This implies that are provided in Figure 7. The VRC-TST calculated capture
any reduction in the predicted rate coefficient due to variation rate is seen to be in good agreement with experifent®
in the form of the reaction coordinate is due entirely to and is also only about 10% greater than the capture rate
increased potential values in the Boltzmann orientational evaluated from rigid-body trajectory simulations. An earlier
average. Empirically, the optimal dividing surfaces have been study of this reactioff® found good agreement between
found to have a shape that follows the potential energy quasiclassical trajectory simulations and reaction-path-based
contours for small angular deviations from the minimum variational TST predictions. A recent study has applied this
energy path while sampling the highly repulsive interactions approach to the kinetics of radical reactions with O atéths.
at large deviation&% 768 In many instances, the optimal For reactions of two nonlinear fragments the requisite
dividing surfaces are obtained by placing the pivot points potential energy surface is six-dimensional. In this instance,
near the center of the radical orbitals. For a variety of atom- a grid-based scheme is ineffective due both to the large
plus-radical reactions, the contours of the radical orbitals number of points required to appropriately sample the full
were found to be a good approximation to the optimized orientational space and to the inefficiency of simple multi-
dividing-surface shap&% 7 Indeed, using the radical-orbital ~ dimensional fitting schemes. For a number of such reactions,
contours as a dividing surface might well provide an even an alternative approach involving the direct determination
more optimal transition-state theory estimate. of the potential energy for each of the configurations sampled

The most difficult aspect of the implementation of VRC- in the Monte Carlo integration has proven to be effec-
TST involves the generation of a suitable potential energy tive.”#4787784 The results obtained from this approach for
surface. This potential energy surface generally must spanthe HNN + OH reaction are illustrated in Figure’® An
the region from 2ad 4 A in theincipient bond distance and  accurate estimate of the HNIN OH rate coefficient was a
cover all orientations of the two fragments. Early work key ingredient in predictions for the calculated branching in
employed qualitative model surfaces based, for example, onthe NH, + NO reaction. The latter reaction is of central
assumed extrapolations and interpolations of the potentialimportance in the Thermal De-NOx process. The predicted
from the molecular bonding to the long-range interaction decrease in the HNN- OH association rate coefficient with
regions’®7"* Such model studies are similar to empirical increasing temperature as well as the details of thigrars
implementations of the statistical-adiabatic-channel nigdét branching were both important for reproducing the observed
and to other models assuming an exponential dependencdranching for the N+ NO reaction.
of transitional mode frequencies on the reaction coordiffate. For many reactions, there are multiple sites where the two

For radicat-radical reactions, considerable effort has reacting fragments can bind together. For example, in the
recently been devoted to obtaining accurate potential energyHNN + OH reaction discussed in the previous paragraph,
surfaces from detailed electronic structure calculations. A the OH can bind to either the cis or trans side of the HNN
difficulty is that accurate calculations of potential energy fragment. Other examples of reactions with multiple binding
curves for radicatradical reactions generally must involve sites are the recombination of resonantly stabilized radicals,
multireference wave functions® 7> standard single-refer-  such as gHs, and ion-molecule reactions with multiple
ence-based methods are generally inadequate in the tranelectrostatic minima. Early VRC-TST work on such reactions
sition-state region for this kind of reaction. When one of assumed a simple separation of the channels, with separate
the fragments is an atom and the other is nonlinear, the optimizations of the transition-state dividing surface for each
requisite potential energy surface is 3D. In this instance, channel. However, in many instances the channels are not
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HNN + OH -> HNNOH wheren(t) is the number density (or population) of state
————T——T T T T T at timet, andp; is the probability per unit time of a tran-
] sition from statej to statei. The evolution of the popu-
lations according to eq 2.5.14 is equivalent to a stoch-
astic Markov process. The evolution is Markovian as
long as thep; data do not depend explicitly on the time or
on the past history of the populatioff§. For our pur-
poses, such an equation will be applicable as long as the
characteristic times for intramolecular motion are much
smaller than the average time between collisions. This
N condition is always satisfied for dilute gases, and thus we
24 . 1 can apply the ME under almost all gas-phase conditions, at
~- e least until we reach pressures of several hundred atmo-
BRI spheres.

""""""""""" The master equation in the form of eq 2.5.14 has been
———— widely applied to chemical kinetics problems involving
400 600 800 1000 1200 1400 1600 1800 2000 2200 diatomic molecules. Detailed analyses of this type are

TK) contained in articles on a variety of applicaticrig?8” 792
these articles also contain a bibliography of previous work

Figure 8. Plot of the HNN + OH high-pressure addition rate 4 similar topics. In general, eq 2.5.14 could also be

coefficients versus temperature. The dashed line denotes the rat; - . .
to form trans HNNOH, the dotted line denotes the rate to form %0”“”&?“ if thep” values were func_tlons Of. th&@ \./al'
cis-HNNOH, and the solid line denotes the total addition rate. ues. This would occur for example in the dissociation of a

pure diatomic gas where vibratiewibration energy trans-

separable. Furthermore, implementing the assumed separatiofer is important, whereas dissociation of a diatomic mole-
via approximate infinite potential barriers, at least in cule dilute in a rare gas is an example of the linear case.
principle, negates the variational principle. Nonlinear problems have been treated theoretically only

Recently, an improved procedure for treating such multiple infrequently in the past®793794but they are of some cur-
addition channel reactions was present@dhis procedure rent interest® 7% In the following, we discuss molecules
expresses the overall transition state dividing surface in termsmore complicated than diatomics, and a linear version of
of a composite of individual surfaces with one surface for the master equation, which is adequate for the purposes
each of the different binding sites. Each of the individual discussed below.

surfacgs is specified in terms of a fixed distance petwejen For large, polyatomic molecules (or collision complexes),
two points as in the original VRC-TST approach. With this  here are too many states at energies of interest to resolve
approach the global flux through the overall dividing surface hem gll. Consequently, we adopt a contracted, coarse-grained
is evaluated, and minimization of this global addition flux gescription of these molecular systems. Instead of talking
is accomplished via variation of the VRC-TST parameters 4,4t populations of individual states, we talk about popula-
for each of the individual surfaces. This multifaceted dividing s of states with energy betwedh and E + dE, or
surface approach was shown to provide a satisfactory honjations of states with energy betweErand E + dE
repro.duct|on of the trajectory estimates for thgHg+ H and with angular momentum quantum number equdl tb
reaction. we had not already indicated our intent to adopt the RRKM
2.5.3. Master Equation and Its Application to Reactions approximation, ;h's ChontraCtefd.dest”pt'on W°|“|d fOLce iton
over Potential Wells us. It distinguishes the reactivity of states only by the good
constants of the motion in the isolated molecule, the total

In Section 2.4, we pointed out that one of the assumptions energy and total angular momentum, and quite frequently
of transition state theory is that the reactants are distributedonly by the total energy.

among their states according to an equilibrium distribution.
We also pointed that this is often a reasonable assumption
for simple barrier reactions. As we now turn attention to
barrierless association reactions and multiple-well, multiple-
arrangement reactions we must reexamine the equilibrium
assumption. This will require a consideration of energy
transfer collisions and their competition with reaction. This
competition, as well as the competition between various
possible reactions of the collisional intermediates (e.g.,
redissociation vs rearrangement even in the absence of energy
transfer) is controlled by the master equation, which is the
governing equation of the statistical model for multiple-well, whereng is the number density of an inert dilueni is the

-

a o N ®owo

k (10"cm® molecule™ s™)

The transition probabilities indicated in eq 2.5.14 are of
two types: reactive (unimolecular) and collisional (bimo-
lecular). Radiative processes could also be included, but they
are negligible in most nonastrophysical applications. To keep
the master equation linear, we envision an experimental
situation in which a bimolecular reaction R X can be
studied under pseudo first-order conditions, i.e.

Ng > Ny > Ny (2.5.15)

multiple-arrangement reactions. number density of the reactant present in excess (frequently,
In its most primitive form, the master equation can be but not necessarily, a stable molecule), apds the number
written as density of the limiting reactant (usually a free radical). We
assume that R and X, upon collision, form one or another
dn, of M configurations of RX. For such conditions, the master
o > (yny(®) — () (2.5.14)  equation for theE, J-resolved number density of isomienf
]

the RX complex can be written as
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dn,(E,J) The second of the inequalities in eq 2.5.15 implies that
= sz”i)pi(EJ; E,J)n(E,J)dE — Zn(EJ) — Ny is a constant, thereby rendering the master equation linear.
dt 2 Thus, it is necessary to supplement the master equation only
M M with an equation fong. Assuming again that the reactants
zkji(E,J)ni(E,J) + Zkij(E,J)nj(E,J) — ky(EN(EJ) + are maintained in thermal equilibrium throughout the course
= = ' of the reaction, we can formulate such an equation as follows:
Np
Ke kd(Ef‘])F(Ev‘])anX - ka(E!J)n(EvJ)! I = |1---1M an M 00
qg, i &P [ = Zfeg)kdi(E)ni(E)dE —
(25.16) dt &
M
wheren(E,J)dE is the number density of isomérof RX anXZKeqj;gg)kdi(E)Fi(E)dE (2.5.19)
=

with energy betweerE and E + dE and with angular

momentum quantum numbaZis the collision rate of RX In writing eq 2.5.19 we have restricted ourselves to the 1D

. {) .
W'g‘ the bath gasky’ is the ground-state energy of isomer  ,yhjem: the extension to two dimensions (i.e., where both
i; P(E,JE,J) is the probability that a collision will transfer g 55 are independent variables) should offer no difficulty.
a molecule in welli from a state with energy betwed Equations 2.5.16 and 2.5.19 constitute a setvbf+ 1

and E' + dE' and with an angular momentum quantum ; ; ; ; :
] . integrodifferential equations for the unknown populations,
numberJ' to a state with energy betwe&andE + dEand ) a0, in the 1D case. Before we solve these equations,

an angular momentum quantum numberk;(E,J) is the we need to consider the collisional terms in the master
unimolecular, RRKM rate coefficient for isomerization from equation.

well j to well i; kq(E,J) is the RRKM rate coefficient for
dissociation of isomerto the original reactants (X and R);  2.5.4, Energy Transfer
k. (E.J) is the analogous rate coefficient for dissociation from
well i to a set of bimolecular products N, is the number
of such product sets; aritL, is the equilibrium constant for
the X + R = i reaction. The functionFi(E,J) is the
equilibrium distribution in welli at temperaturd,

Collisional energy transfer in highly vibrationally excited
molecules and collision complexes is a critical factor in
determining rate coefficients for reactions that involve the
formation of intermediate complexes that live long enough
to suffer one or more collisions. Energy transfer manifests
e itself in the master equation in the rate coefficient for energy

Fi(EJ) = pi(EJ)e "TQ(T) (2.5.17) transfer,k(E,J;E'J), which we have implicitly assumed in

eq 2.5.16 is factorable into a collision rai&E’,J'), and a
whereQi(T) is the vibrationat-rotational partition function probability density functionP(E,J;E',J). We have gone even
for well i, andpi(E,J) is the correspondingdrresolved density  one step further and taketfE',J') = Z, a constant indepen-

of states. dent of energy and angular momentum. Such a formulation
Most commonly a simpler version of eq 2.5.16 is does not pose a limitation & is taken to be sufficiently

employed in chemical kinetics problems, one in whi€fs large and ifP(E,J;E',J") is chosen accordingly. As far as the

the only independent variable (and not bd&hand J), an master equation is concerned, there is a degree of arbitrari-

enormous simplification. It is useful to write it out for clarity:  ness allowed in defining what one means by a “collision.”
The only constraint is that the same definition must be used

dn,(E) consistently in calculating and P(E,J;E',J).
= Zfof)Pi(E,E')ni(E')dE’ — Zn(E) — The problem of definingZ unambiguously is strictly a
dt B classical mechanical one; it does not exist in quantum

M M mechanics. The problem occurs because of the singularity
iji(E)ni(E) + Zkﬂ-(E)nj(E) — ki (B)ni(E) + that exists in classical mechanics&E = 0 in the energy
I = transfer cross section(E,J;AE). It is related to the singular-
Np ity at zero scattering angle in the classical, elastic, dif-
Keqkd_(E)Fi(E)anX — ka_(E)ni(E), i=1,..M (2.5.18) ferential-scattering cross section. As the impact parameter
' =1 in classical trajectory calculations is increased, there is less

and less energy transferred, and the scattering angle becomes
The term in eq 2.5.16 involving=(E,J) (or that in- smaller and smaller. There are a very large number of
volving Fi(E) in eq 2.5.18) is more naturally written as collisions withAE ~ 0 and nearly zero scattering angle. One
ks (E,J)nrNx pr x(E,J)€ PEIQRr x, Wherek,(E,J) is the associa-  can increasémay, the maximum impact parameter in the
tion rate coefficient for formation of isomer from the trajectory calculations, without limit and not affect the
reactants, Qx is the partition function per unit volume of inelastic scattering cross-sections. Classical trajectory cal-
reactants (including relative translational motion), and culations do give unique values for the proddhE[)where
prx(E,J) is the corresponding density of states. The form [AELls the average energy transferred per collision, but not
used in eq 2.5.16 comes from applying microscopic revers- for Z and [AEQindividually.”®-8%2 Thus, the questions of
ibility to the association/dissociation reactions; both forms how to define a collision, how to calcula& and how to
assume that the reactants are maintained in thermal equilib-choose the “optimum” value df.ain a classical trajectory
rium. The form shown in the equation has the advantage calculation are intimately connected.
that is does not require the explicit calculationeafx(E,J), It has become common practice in master-equation
which is a complicated convolution of the state densities of analyses to chooséto be the Lennard-Jones collision rate,
the two fragments R and X. Nevertheless, we have use forZ, ;. However, such a choice has been called into question
both formulations below. several times in the pa&t8°2 Recognizing thaZ[AECor
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7b? [AEL] is a constant in trajectory calculations as long
asbmax is large enough, and defining\ElJ as the average
energy transferred per collision for a fixed impact parameter
b, Lendvay and Schat® used the criterion thaby.x be
defined by the convergence of the integral,

Thmax AAED= [ IAEL] 27bdb  (2.5.20)

to within 3% of its limiting constant value &%, «. They
found that, for collisions of highly excited GSSF;, and
SiF; molecules with a variety of collision partnersbmad
determined from this criterion was always larger than
and could be larger by as much as a factor of 4.7, with a
typical ratio of about 3. However, Nordholm and Schfhz
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use of the single-exponential-down model is largely a matter
of expedience: the parameterin the exponential is equal

to [AE4L) the average energy transferred in a deactivating
collision, to a high degree of accuracy in most cases. In
general, one can take to be a function o' andT, even
though doing so is not yet common practice. Evidence from
thermal dissociation/recombination experiments suggests
strongly that AEsCincreases roughly linearly with, at least

for small molecules with weak collidefé* More direct
experiments also suggest that there should be an energy
dependend®’831.83%f [AE4L] Trajectory calculations confirm
this behavior only to a limited extent; the problem is that
most such investigations are reported in term@\&L] rather
than[AE4] The former has built-in energy and temperature
dependence from varying contributions of the activating wing

subsequently argued that the condition used by Lendvay andiih E and T: the latter does not.

Schatz is too stringent and offered a somewhat more
complicated alternative, one that frequently yields values only
slightly larger thanZ, ;. This result is more consistent with
the earlier work of Brown and Millef?® who studied
collisions of highly excited H@ molecules with helium.
Brown and Miller approached the problem from a different

perspective, by considering the energy-transfer cross section

o(E,J;AE), directly. All the unwanted, high impact-parameter
trajectories are limited to a narrow region nedE = 0 of
this function. In fact, abnaxis increased beyond a particular
point, only values ofs in this region continue to change.
Ignoring this “elastic singularity” ahE = 0, Brown and
Miller fit the remaining inelastic cross sections to an assumed
functional form, thus extrapolating the inelasti(E,J;AE)
to AE = 0. Integrating over all values &fE gives a value
for the total inelastic collision cross section, and thus an
appropriate value of. The values ofZ thus obtained by
Brown and Miller varied with thee andJ of HO,, but on
average they were about 25% larger ttan

Taking Z = Z; is probably a satisfactory choice for
collisions of polyatomic molecules with weak colliders such
as rare gas atoms and diatomic molec@tésgut not for
collisions between two large polyatomic molecules or for
collisions involving highly polar molecules. In such cases
the Lennard-Jones potential is not a very good description
of the intermolecular interactions. Michael et®.and
Durant and Kaufmdif®8%have investigated alternative ways
of determining appropriate values f@ The latter favor

calculating the total elastic cross section quantum mechani-

cally and using it to defin&. However, this is probably too
complicated for routine use in master-equation modeling. It
is worth repeating, however, that only the proddé&; not
the individual factors, has meaning for our purposes.

The energy transfer functiddremains an elusive quantity,

even though it has been the subject of investigation numerous

times in the past, both theoretical§801802.807816 gnd
experimentally?”-817-828 \We shall restrict our discussion to
the 1DP(E,E') and forego considering the 2B(E,J;E',J');
very few problems actually require knowledge of the latter
anyway. It is common practice in master-equation models
to assume a single-exponential-down function PYE,E'),

in Which452,829-835

1

PEE) = C(E)
N

exp(—AE/a), E<E (2.5.21)

whereCy(E') is a normalization constant amxE = E' — E.
The activating wing ofP(E,E'), i.e., the function forlE >
E, is then determined from detailed balaf€€lhe prevalent

A more serious concern is th&®(E,E') is not very
accurately described by a single-exponential-down model.
Since the Brown-Miller classical-trajectory analysis of He
— HO; collisional energy transfer, virtually all classical
trajectory calculations and direct experiments have concluded
that a double-exponential-down formulation is a more
realistic description oP(E,E').799.801,802,809,812,816,821.823.8%,ch
a model can be written as

1
Ch(E)

P(EE) = [(1—f)exp—AFH,) +

fexp(-AE/a,)] E=<E' (2.5.22)

Again, the activating wing oP(E,E') is determined from
detailed balanceCy(E') is a normalization constant, arid
oy, and a, are parameters in the model. However, such a
model has not been widely used in master-equation calcula-
tions. Thermal dissociation/recombination rate coefficients
are not very sensitive to the form B(E,E'),%3” only to [AE4
or [AEL] This may not be the case for bimolecular reactions
over potential wells, especially those where the potential
energy barriers to isomerization or fragmentation to bimo-
lecular products lie much lower in energy than the reactants.
In fact, Miller and Chandlé?® found significant effects of
the high-energy tail ofP(E,E') in studying the overtone
isomerization of methyl isocyanide. Such photoactivated
problems are very similar energetically to the bimolecular
collision problems just described. In any event, there have
as yet been no systematic investigations of the effects of
various forms ofP(E,E’) on bimolecular reactions over
potential wells. Also, there is no systematic prescription for
choosing the parameters in eq 2.5.22 for any particular
molecular system, an obstacle to implementing the double-
exponential-down model.

Luther and co-workePd” have suggested a third model
for P(E,E),

1
Cu(E)

P(E,E) = exp[— (%E)q E<E (25.23)

with the activating wing determined from detailed balance,
as usualy anda are parameters in the model. The advantage
of this formulation is a certain degree of flexibility. ¥ =

1, P(E,E’) reduces to a single-exponential-down function. If
Y < 1, there is a long tail on the distribution, not unlike that
of a double exponential, and ¥ > 1, one gets a highly
localizedP(E,E') function. In fact,Y = 2 corresponds to a
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Gaussian. Like the double-exponential model, this function the subscript RX denotesR X. The elements of the matrix

has not been widely used. K(E,J) are algebraic sums of isomerization and dissociation
Regardless of the considerations raised above, mastertate coefficients; all its diagonal entries are positive, and all

equation models of chemical kinetics almost invariably utilize its off-diagonal entries are negative. The vecibfE,J)O

Z = Z; and invoke a single-exponential-down model for contains the association rate coefficients.

P(E,E"). As noted above, these choices are largely a matter Applying the steady-state approximation to eq 2.5.24, one

of convenience. They are reinforced by the lack of any obtains for the population vector,

systematic procedure for choosing the parameters in the more

complicatedP(E,E') models and by the fact thaf,; is In(E,J)= K_1(E,J)|b(E,J)mRnXpR'X(E,J)e_ﬁE/QR'X('I')

probably not too bad a choice fdrif the bath gas is a weak (2.5.25)

collider, such as one of the rare gas atoms or a diatomic o

molecule. Energy transfer in highly vibrationally excited whereK ~%(E,J) is the inverse matrix ok (E,J). The rate of
molecules is probably the least well understood area of formation of bimolecular products can also be described by

theoretical chemical kinetics. a vector equation,
2.5.5. Solving the Master Equation d|P(E,J)0]
) . dPEID e el (25.26)
The master equation has been formulated and solved in a dt

number of different way$s36:788-80083%-871 and we especially N

note some attempts to solve the 2D master equation for somavhere the components ¢P(E,J)Care the number densities
special case®0-752839-847,851,853,855857,859.860)\|ost work has per unit energy of the various possible sets of bimolecular
been directed toward thermal dissociation reactions, which products, and(E,J) is the matrix whose,j element is the
are just a special case of the methodology described below dissociation rate coefficient from well to producti.
An exception is the work on £ls + O, by Venkatesh et ~ Substituting eq 2.5.25 into eq 2.5.26 resullts in the expression,
al. ¥6.880whose methodology for determining rate coefficients dIP(END

is of limited applicability, because it implicitly equates a rate IP(E.J) —

coefficient to a “flux coefficient.” We restrict our attention dt
here mainly to the 1D problem, which is probably sufficiently D(E,J)K_l(E,J)|b(E,J)|]]RnXpR X(E,J)e_ﬁE/QR «(T)
accurate for most purposes. For application to bimolecular ’ (2"5_27)

reactions over potential wells, there is a very important case
for which it is not much more difficult to solve the 2D master Integrating overE and summing oved, one can easily
equation than it is to solve the 1D problem. That case is the identify a vector of thermal rate coefficients as the factor
collisionless (or zero-pressure) limit, obtained from eq 2.5.16 multiplying ngny,

by taking the limitz — 0. By comparing 2D solutions (which

we call microcanonicalfconservative theory) with 1D

solutions (which we call microcanonical theory) in this limit, lko(M = Z(ZJ +

one can get a good idea of the potential importance of angular R.X

momentum conservation on the reaction in general. Since 1)f°°D(E,J)K71(E1J)|b(E’J)|__"bR X(E,J)efﬂEdE (2.5.28)
is a constant of the motion in the absence of collisions, this 0 ’
limit might be expected to give the maximum effect of
angular momentum conservation on the thermal rate coef-
ficients. Moreover, under conditions of interest, many
important reactions actually occur in this limit.

Another important limit is the high-pressure, or collision-
dominated, limit in whichZ — . Rate coefficients in this
limit can be calculated directly from the transition-state
theory for bimolecular reactions as the rate coefficients for 1
complex formation, or the “capture” rate coefficients. In this |ky(T)C= —Z(ZJ +
limit, thermal equilibrium is established in the first complexes hQg x(T)
formed before any rearrangement can take place. Conse-
quently, the only products formed are those corresponding
to the wells that are directly connected to the reactants.

Our discussion of the collisionless limit follows closely
that of Hahn et a¥’? The theoretical development is a
generalization of that first given by Miller et &3 If one
takesZ = 0, eq 2.5.16 can be written in the simple vector

where the subscript 0 reminds us that we are working in the
collisionless limit.

A further simplification results when the appropriate
RRKM rate coefficients of eq 2.5.6 are substituted into eq
2.5.28. All the densities of states can€&land one is left
with the result,

1) J5 No(E)N (EJ)IN(E,J) & " dE (2.5.29)

whereNp, Nx 1, and |[NyCare related td, K1, and|bin
that the former contain only the numeratd&gE,J) in the
corresponding RRKM rate coefficient expressions of the
latter. The vectofky(T)contains the thermal rate coefficients
for all the bimolecular product channels. Equation 2.5.29 is

form, very convenient in that one can work only wity, Nk, and
din(E,J)0 INpDand never have to deal with the densities of states.
——— = —K(E,J)In(E,J)[H- Evaluating eq 2.5.29 offers no particular difficulty as long
dt _ge as one is careful to avoid singularities x.872
NRNy [B(E,J) [P x(EJ)e "/Qr x (2.5.24) Perhaps the most intriguing example of a bimolecular

reaction that takes place in its collisionless limit under normal
where|n(E,J)[s (in Dirac notation) the vector of population  conditions is the reaction between peind NO*82874This
densities for a givere andJ, i.e., each component of the is the key reaction in the Thermal De-N@rocess/> 878
vector corresponds to the population of a different well, and an important noncatalytic aftertreatment scheme for removing
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NO« from the exhaust gases of stationary combustors; NH, + NO -> Products
ammonia is the chemical additive. The bt NO reaction — T T T T T T
has three energetically accessible product channels,

NH, + NO— N, + H,0 (R1a)
NH, + NO — NNH + OH (R1b) 181
NH, + NO— N,O + H, (Ric) ]

although only the first two are kinetically significant.
Reaction (R1a) is dominant at low temperatures and remark- &
ably involves breaking all three bonds in the reactants and mg
forming three completely new bonds in the products, all in <
one collision. However, the radical-producing channel, (R1b),

is the most significant feature of the reaction. Above a
temperature of 1100 K, the chain branching from this channel
allows the process to be self-sustaining. Figure 9 shows the

olecule™ s™

1E-12 +

T T T T T T T T T T T T T T T T T T
400 600 800 1000 1200 1400 1600 1800 2000 2200
Temperature (K)

Figure 10. Plot of the total rate coefficient for the NH+- NO
reaction versus temperature. Symbols denote various experimental
measurements, whereas the solid line denotes collisionless-limit
master-equation predictions.
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Figure 9. Reaction coordinate diagram for the pi#H NO reaction. 0.3 -
reaction coordinate diagram for the reaction. Even at the 024
lowest energies from which a complex can be formed from 01
NH, + NO, the complex lifetimes are much smaller than
the mean time between collisions, 29— 10 ' s compared
to 1071%s at one atmosphere presstfeConsequently, one
expects the reaction to be in its collisionless regime up to
pressures of a feW atmospheres. This behavior has beerf:igure 11. Plot of the branching ratio to form HNN- OH in the
confirmed experimentally at least up to pressures of almost NH, + NO reaction versus temperature. Symbols denote various
an atmospher%?4 experimental measurements, whereas the solid line denotes colli-
Diau and Smitf® were the first to treat the kinetics of sionless-limit master-equation predictions.
the reaction theoretically using methods like those discussed
in this review. Unfortunately, their PES was insufficiently Although the collisionless limit is of considerable practical
detailed to be quantitatively accurate. Subsequently, Miller importance, problems in which collisions play a significant,
and Klippensteiff® and Fang et al®® studied the reaction in  if not dominant, role are even more prevalent. For reasons
detail. The total rate coefficient is largely (but not exclu- noted above, we restrict ourselves to a discussion of the 1D
sively) controlled by TS2 (transition state 2) in Figure 9, master equation (microcanonical theory, not microcanonical/
whereas the product distribution is controlled by a competi- J-conservative theory). Also, it is convenient to assume that
tion between TS4 and fragmentation of the trans HNNOH we have added terms to the master equation, analogous to
isomers into NNH+ OH through TS8. The latter transition  the Kegks(E)Fi(E)nrnx term on the right-hand side of eq
state actually includes four separate reaction paths. Treating?2.5.18, that describe reassociation of the bimolecular prod-
this part of the process (both the quantum chemistry and theucts. Furthermore, let us assume that for each set of
transition-state theory) accurately is crucial. Making modest bimolecular products one of the components is maintained
adjustments to key features of the PES, Fang et al. were ablén great excess, analogous g for the reactants. These
to predict both the total rate coefficient and the branching assumptions keep the master equation linear and allow us
fraction (u/(kia + kip + kig)) of the reaction accurately over to deal with all chemical configurations (wells, bimolecular
a wide range of temperatures (see Figures 10 and 11).reactants, and bimolecular products) on an equal footing.
Interestingly, none of these results are very sensitive to Such analyses could easily be performed, but it is common
whether angular momentum is conserved. practice to assume that any set of bimolecular products

o+ 1—
200 400 600 800 1000 1200 1400 1600 1800 2000 2200
Temperature (K)
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represents an “infinite sink”, i.e., that such products, once modes of relaxation” of the system. They describe the
they are formed, never return to the wells. We deal with system’s approach to equilibrium from an arbitrary initial
this approximation after we treat the more general case. condition.

Equations 2.5.18 and 2.5.19 and an equation analogous From the solution vector one can obtain the macroscopic
to (2.5.19) for each set of bimolecular products can be populations directly for the bimolecular components and by
combined into one (vector) master equation. After the integration,
integrals in these equations are approximated as discrete sums
with a grid spacingdE, one can manipulate the master

equation algebraically into the deceptively simple féffh, X() = fE,w)Xi(E’t)dE (2.5.36)

diw(t)0l
at

for the wells. Even thougiN may be an extremely large
number, typically in the thousands in a practical problem,
not all of these relaxation modes describe chemical change,
i.e., changes in the macroscopic populations. The vast
majority simply describe the relaxation of the internal degrees
of freedom of the molecules corresponding to the wells, i.e.,
relaxation of the internal energy. We refer to these eigen-
modes as internal energy relaxation eigenmodes (IERES).

n The remainder are chemically significant eigenmodes (CSES).
( X When the eigenvalues corresponding to the IEREs and CSEs
Qr xOE are vastly different in magnitud&-883 the internal degrees

of freedom relax much more rapidly than the chemical ones.

In eq 2.5.31yi(Et) = (E)/fi(E) andfi*(E) = F(E)Q(T); Such a situation does not always exist. However, when these
X(E,)OE is the fraction of the initial reactant concentration conditions do prevail, it is an enormous simplification for
that is present in well with energy betweek andE + oE determining the thermal rate coefficients from the eigenvalues
at timet, andX is the fraction that is present as R at time and eigenvectors @. Moreover, even when the eigenvalues
t. The three dots at the end indicate that there is a componentio not satisfy these conditions, modifications to the general

Glw®)D (2.5.30)

whereG is a real, symmetric (Hermitian) matrix, ana(t)C]
is the vector of unknown populations,

w(t) = [y.(E%b,...,y.(E.),...,yi(ES’),...,yAE.),---,

1/2 T
) xR,...] (2.5.31)

of the vector of the same form asy(Qrx0E)V?Xr for each
set of bimolecular products.

The Hermiticity of the transition matri% facilitates the

method can be made to determine the rate coefficients of
interest, as discussed below, after eq 2.5.51.
If there areS “species”, or chemical configurations, in a

solution of eq 2.5.30. One can find its eigenvalues and proplem,

construct an orthonormal set of eigenvector&adfrom the
solutions of the eigenvalue equation,

Glg = 4lg0 (2.5.32)

One can then expan(t)din this basis and obtain the

solution of eq 2.5.30 in the form
Iw(t)C= T|w(0)C (2.5.33)

where|w(0)CIs the initial-condition vector, andl is the time
evolution operator,

N-1
~ ¢
T= Z)e% [efary (2.5.34)
=
whereN is the order of the matrix,
M
(2.5.35)

N=ZNi+Np+1
=

andN; is the number of grid points in well the final 1 in
the sum is for the reactants.

All the eigenvalues ofs are nonpositive, i.e., either zero

or negative. There is always one zero eigenvalyes O;

the corresponding eigenvector corresponds to a state of s1 SS—-1)
complete thermal and chemical equilibrium. The remainder =—

of the eigenvalues must be negati¢e< 0, withj = 1,...N

— 1; otherwise, the solution (egs 2.5.33 and 2.5.34) would

N S—1 (2.5.37)

chem ™

chemically significant eigenmodes in addition Ag |goll
Each of these modes describes the approach to chemical
equilibrium of one species with one or more other species.
To see the validity of eq 2.5.37, it is useful to consider a
specific case. Suppose we have a problem wigre 4.
Chemical equilibrium can be brought about in one of two
distinct ways. In the first way, the fastest-relaxing mode
brings one species into equilibrium with another. The second
fastest CSE equilibrates these two species with a third, and
the slowest eigenpair describes the equilibration of the first
three species with the last. In the other way of approaching
chemical equilibrium for this problem, the third and fourth
species equilibrate through the second eigenmode, and the
two pairs equilibrate via the slowest-relaxing eigenmode.
Either way,Nchem= S — 1. In more complicated problems
the number of possible ways that the system can approach
complete chemical equilibrium becomes quite large. Nev-
ertheless, there ae— 1 chemically significant eigenmodes.

For the same problem, i.e., one wiithemical configura-
tions, there aré\k reversible elementary reactions occurring
simultaneously, where

N.=$n (2.5.38)

n=

blow up ast — . We refer to the second largest (i.e., the If S= 2, bothN¢emandNy are equal to unity, and it is not

least negative) eigenvalue GfasA,, the third largest a,,
and so on; the corresponding eigenvectors|gsg|g.l)...,-

difficult to obtain the forward and reverse rate coefficients
from the single eigenvaluel;, and the equilibrium con-

etc. Widon§81-883 describes these eigenpairs as “normal stant®®! However,Ny increases quadratically witBand if,
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for example,S = 10, thenNy = 45. It is this large number Nehem
of elementary reactions, all occurring simultaneously, that ky=— Z)/ljaijbji
makes it difficult to obtain the phenomenological rate =
coefficients from the raw time histories that come from (2.5.42)
H H FPE Nchem e
solutions to the master equation, but it is these rate
coefficients that we want for use in modeling macroscopic ki = lealjbji
=

chemical phenomena.

Under conditions where the |IEREs relax faster than the

CSEs, the macroscopic populations can be written as where, if thea; are taken to be the elements of a matkix

the b are the elements of its inversB,= A~. Note that
egs 2.5.42 apply to any and all initial conditions and, more
. importantly, that eq 2.5.39 (and thus eqgs 2.5.42) is applicable
Xi(t) = Z’ g€, i=1,..MRP,..., (2539) g long a$in,,.] < |Ang..+1l, @ less restrictive condition than
= that necessary for the applicability of the initial-rate method.
.. As long as the rotationalvibrational relaxation period is
after the IEREs have been relaxed to zero. The coefficient gyer pefore the chemistry is finished, there will be at least
8jo = Xi(«0) is the equilibrium population of configuratian 5 short period of time, late in the reaction, when a
and phenomenological description of the chemical kinetics will
] apply, with the rate coefficients given by eqs 2.5.42.
a;=—AX; j=0 (2.5.40) For most conditions that are of practical interest, the initial-
rate method and the long-time method yield the same values
whereAX; is the change in population that accompanies the for the rate coefficients. However, as the magnitudéngf,,
time evolution of eigenmodgfromt = 0tot = « for a approaches that df,,+1 the long-time method will continue
specific initial condition. The values of the varioa; thus ~ to yield good values for the rate coefficients when the initial-
depend on the initial condition, but they can be calculated rate method will fail. Nevertheless, the initial-rate approach
readily from the solution to the master equation, egs 2.5.33 is generally the method of choice, simply because it is easier
and 2.5.34. It is thel; and a; values that are required to 0 apply under most conditior§8 5% _
calculate the phenomenological rate coefficients. Ina Sin:mtah' papt‘?f in 1}{?7.4, I?artlzland W'Qﬁgﬁ;lsﬁ? f?”
Kippensien and Wit have deve o diferent S251°%E 15 D eicostentraplen smiar o i o
mhethqull Of. dg}ermlnlr']g the. rate ﬁoifﬁmentsh from hFhﬁ additional assumption. The essence of this assumption is that,
\(;vee?a{ﬁ?h)ésilrﬁtr;;;cri?é er:qgeeiﬂgg'ri'nlg Ltﬁizgztg?f?érggf ivr\mlitilgl during the course of reaction, the state populations are not
conditions in evaluatingy; in eq 2.5.39. Differentiating this perturbed greatly from their equilibrium valu€s One can

. X . ; . probably take this to mean that their result will apply when
equation with respect to time and tqkmg the limit> 0 only states that are not heavily populated at equilibrium are
results in the rate-coefficient expressions,

affected significantly by the reaction. With this assumption,
Bartis and Widom derived rate-coefficient expressions

Nchem

Nehem 0 analogous to egs 2.5.42 that satisfy detailed balareetly
ke = zlfleXij i.e., the forward rate coefficient divided by the reverse rate
= coefficient is equal to the equilibrium constant. Although it
Nehem (2.5.41) has not been proven here that the rate-coefficient expressions
kj=— Z AAX; ) given above satisfy detailed balance, they normally do. They
= will satisfy detailed balance (at least) under the conditions

that the Bartis-Widom analysis applies.
wherek; is the total rate coefficient for removal of species _ The rate coefficients that are derived from egs 2.5.41 and
i, andk; is thei — | rate coefficient. The superscrig) bn 2.5.42 are first-order or p_seudo flrst-orde_r rate coefficients.
In cases where the reactions are really bimolecular, the rate
coefficients calculated from these expressions must be
divided byny or its equivalent to get the true bimolecular
rate coefficients. This minor modification is the only price
we pay for the “linearization” of the master equation
described above.
At this point it is convenient to consider a particular
xample to illustrate the methods, to show how one can

AX? indicates that specieismust be the initial reactant.
This method is strictly applicable only as long|as, .| <
|ANgert1l SINCE One must be able to identify a suitable time
to take ast = 0. In other words, there must exist a time
period where all the IEREs have relaxed to zero, but no
reaction has occurred. This condition is not as restrictive as

it appears. In fact, it is generally presumed to be a necessary,

cpndjtion for a rate-coefficient description of the chemical approximate bimolecular products as infinite sinks, and to
kinetics to apply. describe what happens whég, becomes equal thy,, +1.

The second approach taken by Klippenstein and Miller is Figure 12 is a reaction coordinate diagram for the reaction
what we call the long-time method, for reasons that will of propargyl radicals (€Hs) with hydrogen atom&®> One
become apparent below. This method consists of recognizingset of bimolecular product8CsH, (propargylene)} Ha, is
that eq 2.5.39 is identical in form to the solution of a system formed by direct abstraction on a separate (triplet) PES from
of first-order rate equations. One can then solve the inversethe others. Thus, the rate coefficient for this reaction can be
problem of finding the phenomenological rate coefficients calculated independently of the rest by the methods discussed
for the system of reactions that generated the given solution.at the beginning of this review. However, the theoretical
Klippenstein and Miller solved this problem and obtained treatment of the remainder of the reaction requires the
the results, methods described just above.
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can be inserted into eqs 2.5.41 and 2.5.42 to obtain the
thermal rate coefficients.
The situation is not quite so simple if there are mul-

----- o 1CaHatH, tiple sets of products coupled together in an infinite
H,CCC . :
T sink. The above procedure gives only the total rate coef-
N ficient for all products; it says nothing about the indi-

vidual rate coefficients; however, it is not too much
more difficult to extract those. From eqs 2.5.33 and
2.5.34, one can write4(E,t) during the rate-coefficient
period as

Energy (kcal/imole)

Nchem

%(Et) = Zl c;(E)e (2.5.47)

J

) — : where cj(E) comes from eigenvectoj and the initial
Figure 12. Schematic diagram of the;8, potential energy surface.  condition. The total rate of formation of prodyzts (see eq

In studying this reaction Miller and Klippensté&hlumped 2:5.18)
all three of the remaining sets of bimolecular products into dx M
a single infinite sink. Thus, for the purposes of the master L f“:)kp(E)&(E t)dE (2.5.48)
equation analysis, there are effectively only five spe@gs, at ; O ’

= 5 andN¢em= 4. At low temperature, if one starts with an
initial condition consisting of all gHs + H, one finds that Substituting eq 2.5.47 into eq 2.5.48, one obtains

the fastest-relaxing eigenpaiy,| g4} describes the equilibra-

tion of CsHs + H with propyne, GHp (well I of Figure dxp Nehem t Mo

12), although other products may be formed simultaneously. —= Z e ZIE'(O)kpi(E)Cij(E)dE (2.5.49)
The next fastest-relaxing eigenpaits,(gs0) describes the dt = 1=

equilibration of these two species with cyclopropene

(c-CsHy), well Ill, while 1,,|g.Cequilibrates the first three Integrating this equation term-by-term frar= 0 tot = o

configurations with allene (§£4a), well 1l. The last CSE results in

(A1,]0:0) describes the slow leak of this equilibrated “four- Nehem

component” system into the infinite sink. = AX.. 2.5.50
One can employ the methodology described above even Xo() J; P (2:5.50)

in the absence of complete chemical equilibrium at long

times. This can be illustrated for the case where there is onlywhere

one set of products in the sink. In this case, the macroscopic

populations satisfy the global conservation equation 1 Netem

AXg =~ Z,Zl Jeoks ()G (B)IE  (2.5.51)
4

M
Xg T X, + in =1 (2.5.43)
= The sum and integral in eq 2.5.51 are relatively easily
evaluated, and egs 2.5.50 and 2.5.51 can be used in eqgs 2.5.41
Differentiating this equation with respect to time and then and 2.5.42 to determine the phenomenological rate coef-
integrating fromt = 0 tot = o, one obtains ficients.
Figure 13 shows the eigenvalue spectrum for thidCt
H problem as a function of temperature at a pressure of 1
atm andny corresponding to a partial pressure of 1 Torr. In
this diagram, the eigenvalues are labeled by their magnitude
at any given temperature rather than by function. If we had
labeled the curves by their equilibration function, there would
be some curve crossing in the diagram. For temperatures
above 1200 K it isl4,|g40) NoOt A3,|gs0) that brings about the
equilibration of cyclopropene with propyne, as indicated in
M the diagram. AT ~ 2200 K, 1, merges with the continuum
(AXR+AXp+ ZAXi)j =0 (2.5.45) of IEREs, a common occurrence in complicated, high-
= temperature reactions. In principle, this creates a problem
for the rate-coefficient analysis discussed above in that all
Thus one can calculai®X; from eq 2.5.45; the other terms  the CSEs are no longer discernible from the IEREs. How-
in the equation come from the solution to the master equation,ever, the problem can be repaired relatively easily. The
as indicated above. These results, coupled with the long-merging of, with the continuum of IEREs means that the
time limits, reactionc-C3H, == CsHyp equilibrates on IERE time scales.
Therefore, the two species cease to be distinct in the kinetic
Xy(0) =1 sense discussed above, and we can combine them into a
single “superspecies” for kinetic purposes, takieg= 4
Xg(0) = Xi(®@) =0, ( =1,..M) (2.5.46) instead of 5 in the analysis. This reduces the number of terms

M
AXg + AX, + ZAXi =0 (2.5.44)
1=

Because the terms in eq 2.5.39 (or eq 2.5.34) are linearly
independent functions of time as long as no two CSEs are
equal, eq 2.5.44 must be satisfied not only globally but also
by each eigenmode individually, i.e.,
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Figure 13. Eigenvalue spectrum for thez8; + H problem at a

pressure of 1 atm.

in the sum of eq 2.5.41 by one and reduces Ahand B
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The theoretical methodology described above eliminates
the ambiguity that exists in more ad hoc methods of
calculating rate coefficients. In Figure 12, for example, TS4
is irrelevant in the analysis; including it or excluding it gives
the same results. That being the case, how does one
distinguish between single-step processes suchldsaC~
CsHyp and its corresponding two-step processH@ —
c-CsHy — CsHyp, when the reaction must pass through the
c-CgH,4 configuration in both cases? The above procedures
automatically make the correct distinctions without any need
for further arbitrary assumptions concerning energies or
lifetimes. Similarly, one never needs to ask or answer the
guestion, “Can allene dissociate ‘directly’ tostz + H
through TS1a?”, or does such an occurrence necessarily
involve intermediate isomerization?

Figure 13 illustrates another important point concerning
dissociation. For temperatures higher than about 1800 K,
and |g.l0describe the equilibration of allene with propyne
and cyclopropene, whereagsand|gsdescribe the dissocia-
tion of the equilibrated threesome tgH; + H. At T =
2200K,—Az is larger than—4, by roughly a factor of 6, i.e.,
the isomerization reactions equilibrate considerably faster
than dissociation can occur. As a result, most experiments
are sensitive only to-4, and not to the dissociation rate
coefficients individually, regardless of which of the three

matrices associated with eq 2.5.42 by one row and oneisomers is prepared as the reactant. This makes it very
column. This procedure is very useful (even necessary) in difficult to measure the rate coefficients directly. Neverthe-
extending the rate-coefficient regime to high temperatures. less, the theory yields good rate coefficients for the dissocia-
Of course, at sufficiently high temperatures there is no real tion of the individual isomers to 413 + H. The results are
distinction between CSEs and IEREs; all chemical processesdiscussed and compared with experiment by Miller and

equilibrate on IERE time scales.
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The most complex reaction to which the methods of c3h3+c3h3 300K
this review have been applied is thgHz + CsH3 recom- A S AL B
bination¢The analysis of this reaction involves 12 potential
wells and 2 sets of bimolecular products. The PES is shown
diagrammatically in Figure 14, which has four parts. There
are 13 CSEs in this reaction, one of which has an anoma- .
lously large magnitude because of a very shallow well. The 01 F
others begin to merge with the continuum of IEREs at >
temperatures as low as 1000 K, a factor that must be
accounted for correctly in the analysis. Nevertheless, rate
coefficients and product distributions for this reaction have 001 b
been obtained by Miller and Klippenstéitt. a2

A plot of the total rate coefficient as a function of
temperature and pressure is shown in Figure 15. The curve

yield
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Figure 15. The total rate coefficient for s + CsH; — products.

labeledk, is the collisionless limit, and the one labeledis

the high-pressure limit, i.e., the rate coefficient for complex

formation (or the capture rate coefficient). Up to temperatures
of about 500 K, there is no difference betwedeyiT) and Figur_e 16. Product distributions for propargyl recombinatio_n_ asa

k(T), indicating that any complex, once formed, ultimately function of pressure. The roman numerals denote stabilization
reacts—the products could be bimolecular or they could be products corresponding to the wells of Figure 14.

stabilized GHg isomers. At temperatures above 500 K, the

k-(T) andko(T) curves increasingly separate. In the absence
of collisions, many GHs" complexes redissociate tosld;

p(Torr)

Figure 16. Phenyl H, which amounts to only 4% of the
products atT = 300 K and a pressure of 1 Torr, is the

+ C3H3 before they can go on to products. The primary effect dominant product up to a pressure of almost one atmosphere
of collisions is to stabilize many of these nonreactive at 2000 K. _ o
complexes in the wells. Thus, the rate coefficient for any  As the pressure on a gas increases, collisional energy trans-
finite, nonzero pressure lies somewhere between the twofer processes equilibrate the reactant better, and the |Im|t|ng
limits, as shown on the plot. high-pressure rate constants from the master equation should
Product distributions for the propargyl recombination agree with transition state theory. This is actually a plateau
reaction are shown in Figure 16 as a function of pres- rather than a final limit, thOUgh, because eventually the rate
sure for two temperatures, 300 and 2000 K. At any constants must become diffusion controlled and small at
temperature, only the bimolecular products (principally ultrahigh pressures or in liquid&: #** However, this physical
phenyl+ H) are formed at zero pressure. As the pressure behavior can easily be masked by changes in the potentials
is increased slightly, the first stabilization products to ©Of mean force due to strong interactions, complexation, clus-
appear correspond to the complexes with the longesttering, condensation, caging, and solvafi$n®Supra-high-
RRKM lifetimes, typically, the isomers with the deepest Pressure reactions can also exhibit effects due to transients
wells. In the present case, these isomers are benzendn the nascent distributions of energized molecétés.
(well VII), fulvene (well 1V), and 2-ethynyl-1,3-buta-
diene (well VI)_. However, as the pressure is incre_ased fur- 3. Gas-Phase State-Selected Reactions and
ther the GHe isomers located early on the reaction path prodyct State Distributions
increasingly become the favored stabilization products. At
sufficiently high pressure, the only significant products are  In the last section, we discussed how to evaluate thermal
1,5-hexadiyne (well 1), 1,2,4,5-hexatetraene (well IlI), and rate constants by QCT calculations or by VTST on an
1,2-hexadiene-5-yne (well V), which are formed directly adiabatic potential energy surface. However, thermal rate
from GiHs + C3Hs. As the temperature is increased, the constants are highly averaged quantities, and it is interesting
trends with pressure do not change, but the low-pressureand often important to quantify the contribution of individual
products tend to persist to higher pressures, as shown instates to the total rate. This is discussed for vibrational and
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rotational states in Section 3.1. When one considers excitedas electronic, vibrational, rotational, and spin quantum
electronic states, one is faced with reactions that cannot benumbers. Comparing eqs 3.1.2 and 3.1.3 to eqs 2.4.73 or
adequately described by a single potential energy surface;2.5.3 shows that transition state theory would be exact if

this kind of reaction is considered in Section 3.2. NVT(E) were equal td\(E). However,N“VT(E) contains the
_ . _ _ assumptions that we can separate out a classical reaction
3.1. Electronically Adiabatic Reactions coordinate (no tunneling) and that there is no recrossing at

he dynamical bottleneck defined by the minimum value of

State-selected rate constants allow one to assess, fo{he number of states along the reaction coordinate.

example, how the excitation of a given normal mode affects ' . _
the dynamics of the chemical reaction. For some reactions On the basis of the above equations, we can write the

i i 15,716,907,90
and some initial vibrational modes state-selected thermal rate\,"v]ﬁfecﬁi?g?}gﬂgﬁ;ﬁﬁﬁ;ﬂiﬁ?g?ﬁfa roximigoi'?c?the
constants may be evaluated by a statistical vibrationally PP

diabatic modéf* that assumes that the vibrational modes SUM OVer open quantized levels (states) at the transition state:

preserve their characters along the reaction coordinate. This Ty _
model is obtained from harmonic CVT by replacing the N'(E) = Z®(E Es) (3.1.4)
vibrational partition function for state-selected diabatic ¢

vibrational modem in quantum state, by exp[— (1/2 + whereE; is a quantized energy level at the transition state.
Nm)Bhwn. In other cases, a statistical-adiabatic theory is more Note that degenerate levels are included a number of times
appropriaté?>-8% Both approaches are probably only ap- equal to their degeneracy. To improve on the two ap-

plicable to high-frequency modes; low-frequency modes tend proximations mentioned at the end of the previous paragraph,
to be neither adiabatic nor diabatic. The most reasonablewe introduce a transmission coefficientfor each level of

approach for a high-frequency mode is to assume that it iSthe transition state so tf3&3566.567,909912
adiabatic, except at narrowly avoided vibrational state

crossings, from the start of the collision only until the system N(E) = ZKd(E) (3.1.5)

reaches a region of high curvature of the reaction §&th o

because reaction-path curvature causes vibrational nonadia-

baticity 36:363:364.900,901 For reactions with barriers and hydrogenic motion in the
Duncan and Truorf§? and Corchado et &P have reaction coordinate, the former approximation (no tunneling)

calculated state-selected rate constants for thé CH, — is often more serious than the latter (no recrossing). The

HCI + CH; reaction. For this reaction vibrational excitation Simplest way to include tunneling in the transmission
of the G—H stretch and the lowest frequency bending mode coefficient is v_wth an eﬁ_ectlve parabolic potential for motion
of CH, accelerate the forward reaction, whereas excitation long a reaction coordinate

of the CH; umbrella slows down the reaction at temperatures 1

below 800 K and accelerates it for temperatures above 900 V=E; — —kif§2 (3.1.6)

K. Similar results have been obtained by Espinosa-@®fci 2

for the CH + HBr — CH, + Br reaction, in accord with + . . .
quantum-mechanical calculations. where k3 is the negative effective force constant. The

In the case of atomdiatom and diatordiaton? reac- transmission coefficient for potential (3.1.6) is giverPBy

tions, it is possible to go further and analyze not only the (F) = o ]
role played by asymptotic (reactant and product) states but io(E) = {1+ exp[E; — BE/Ws]}  (3.1.7)

also the role played by individual levels of the quantized whereWs = Alwa /27 with w- being the imaginary frequenc
transition states in both thermal and state-selected processes, & = njog] @a DeIng ginary frequency

1/2 i i
We define a quantized transition state as a dynamical cqual to ké/”) . We should keep in mind that the force

bottleneck with quantized levels. Then we write the canonical constant in fq 3.161s an effective force COf?Stal’.lt, as is the
rate constark(T) in terms of the microcanonical ohéE)3% frequencyw;. An approximate theory for estimating these
quantities has been preserfféthased on a multidimensional

® - R semiclassical theory of tunneling.
K(T) = j;) exp(-AE)p (BK(E)E (3.1.1) For simple reactions, the accurate cumulative reaction
<1>R(T) - probability for a given potential energy surface can be
calculated by converged quantum mechanical scattering, and
wherepR(E) is the reactant density of states per unit energy. if one examines the microcanonichlesolved rate constant
The microcanonical rate constant may be writte??%£8° k’(E) defined such that

K(E) = [h¢R(E)] *N(E) (3.1.2) K(E) = Z(ZJ + DK(E) (3.1.8)

with one can see clear structure in the rate constant that matches
N(E) = Zzpaa’(E) (3.1.3) well with the structure predicted by combining eqs 2.5.6,
e 3.1.5, and 3.1.795566:567.909912 Thege studies show clearly

that the quantized transition states control the structure of
wherePy (E) is the completely quantum-number-resolved the microcanonical rate constants as a function of energy.
reaction probability from reactant channel to product Furthermore, they show that we can understand the state-
channela’, where “channel” denotes a complete set of to-state dynamics with the highest possible resolution allowed
quantum numbers for a reactant or product. Since the by quantum mechanics, namely, from a specific channel of
reactants are bimoleculag, includes the orbital angular reactants to a specific level of the quantized transition state,
momentum quantum numbers of relative translation as well to a specific channel of the prodii€g:>67.912
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The equations just presented may also be used to derive A related mechanism provides an explanation for some
the ground-state tunneling approximation introduced in old experimental observations of Kable and Houston for the
Section 2.4.4. According to egs 3.1.1 through 3.k(3) is photodissociation of CRCHO* Similarly, the roaming

an appropriately normalized sum of fragment mechanism provides an explanation for the obser-
vation of HO as a product in a number of G- hydrocarbon
P.(E)= ZP‘“"(E) (3.1.9) reaction®!® Preliminary results from a number of direct
o dynamics simulations indicate that roaming fragment path-

. . . . ways are ubiquitous, apparently arising wherever the reverse
This normalized sum is denoted in shorthand as bimolecular reaction of the product fragments has a barri-
_ erless abstraction chanriét.in particular, roaming fragment
k(T) = [P, () (3.1.10) branching ratios of at least a few percent were observed in
direct B3LYP simulations of the £15 + O, NH, + HO,,
HCCO + Oy, and CH + C,H3 bimolecular reactions. The
branching between these roaming fragment channels and the

where <..> denotes a generalized “average.” Next we
multiply and divide by the TST approximation k6T), which

gives simple dissociation channels in the decomposition of closed
[P, (E) shell molecules may have an important effect on combustion

k(T) = “i—k*('r) (3.1.11) modeling, since in the one case two closed shell molecules

[P, "(E) 0 are formed, whereas, in the other case two radicals are

formed. Knyazev has provided a theoretical model for this
where the denominator is another way to wkt€T). In the branching and applied it to the GH- O reactior*®
ground-state approximation, we replace the ratio of averages Discussions of the factors controlling vibrational and
by the ratio for a representative case. rotational energy release and utilization in chemical reactions

The ground-state is a good representative case becausare presented elsewhefe?6-929

tunneling makes the largest relative contribution to the rate  The last topic in this subsection is the prediction of final
constant at lowl' (where the overbarrier process has a very vibrationat-rotational energy distributions or the prediction
small Boltzmann factor), and at lowthe system must either  of the dependence of the reaction rate on rotational energy
be in the ground state or in a state that is energetically similar or low-frequency modes of the reactant that are not expected
to the ground state. As the temperature is increased, moreio remain adiabatic or diabatic even up to the dynamical
states contribute, but als@T) — 1. Sincex(T) based onthe  bottleneck or the first local maximum in the reaction-path
ground state also tends to unity @sncreases, there is no  curvature. TST is not designed for these problems, and one
great harm in basing it on the ground state at all temperaturesgenerally uses classical trajectories for these purposes.

This is equivalent to setting Reviews of general principl&s®?6928 and modern meth-
0dg2:33.930.381 for trajectory calculations are available. A
ka(E) = ko E — (B — Ep)] (8.1.12)  discussion of the reaction CM H, — HCN + H has been

presented as a case study where good agreement is obtained

whered = 0 denotes the ground state. If this is inadequate petween trajectory calculations and approximate quantum
one can use eq 3.1.5 with a less restrictive approximation. scattering theory* Interesting recent case studies involve

Since this review is mainly concerned with thermal rate OH + D, — HOD + D%? and the H+ H,O reaction’33
constants, the above discussion is mainly concerned with Trajectory calculations have shown that very high excita-
practical methods that are designed for calculating thermal tjion energies may convert a reaction from being thermally
rate constants. For a more complete understanding of aactivated with a threshold to showing capture behavior such
reaction, one must consider more than the valley around thegs occurs in barrierless reacticis.
minimum energy path and the dominant multidimensional ) ) ) )
tunneling paths. In particular, as stated by Sun et*lit 3.2. Electronically Nonadiabatic Reactions
is necessary to study the actual motion of the atoms on a Up to this point, we have employed the assumption that
reactive system’s PES.” This is generally done by trajectory the Born—Oppenheimer (adiabatic) approximation is valid,
calculations, but wave packet simulations are becoming which implies that a single potential energy surface controls
reasonably common as well, especially for small systems. the reaction dynamics. However, there are many reactions,
The motion of such systems may take one far from the called non-Bora-Oppenheimer reactions or electronically
minimum energy patf?94925 and several studies have nonadiabatic reactions, in which dynamics does not proceed
indicated the presence of interesting secondary pathways foron a single potential energy surface. These reactions include
the formation of products in bimolecular reactions passing many photochemical and chemiluminescent processes, in
over potential wells. These “roaming fragment” paths, where particular, bimolecular reactions initiated in an electronically
a departing fragment abstracts an atom from the otherexcited stat&>96and those that produce an electronically
departing fragment, are not well described with standard excited species (sometimes called chemiluminescent reac-
statistical treatments. In a detailed study, comparing direct tions) and also unimolecular photodissociations and photoisom-
dynamics simulations with experimental observations, Marcy erizations?>"93° Just as for electronically adiabatic reactions
et al. demonstrated that the reaction offf)(with CHs the ultimately preferred approach would be quantum me-
produces H + HCO predominantly via the abstraction of chanical scattering theory. Although quantum mechanical
an H atom from formaldehyde ¢80) by the departing H  methods are availabf? their cost has so far prohibited
atom?” Recent related experimental and trajectory studies converged calculations except for atewtiatom reac-
have provided clear evidence for the existence of such ations?* 943 Therefore, we will focus on semiclassical
“roaming atom” channel in the photodissociation of form- method&*“in which the nuclear motion is treated classically,
aldehyde (i.e., LCO— HCO + H — H, + CO, where the  whereas the transitions between electronic states are treated
last step involves an H abstraction by the H from HC®). by quantum mechanics.
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We will begin by using the adiabatic potential energy matrix elements, erwhen multiplied byh/i—the nuclear
surfacesy,, which, in the notation of eq 2.3.2, are defined momentum couplings. These matrix elements are typically
by of the order of magnitude of unity in atomic unft$,but

they are largenear conical intersections of the two states

V, =Vt E(Ve') (3.2.1) involved, and they are infinitely largat conical intersec-

tions 50953 Far from conical intersections the effects of the
Note thatV; was just calledV in earlier sections of this  nonadiabatic terms are expected to be small enough that the
review, except in eqs 2.4.42.4.51. For a general poly- Born—Oppenheimer approximation is a good approxima-
atomic system without symmetry, and neglecting sqirbit tion 2°because the nonadiabatic matrix elements of eq 3.2.29
interactions, if there aréN atoms, the potential energy are multiplied byR or 1/,%°which are small in atomic units.
surfaces depend onN3— 6 internal coordinates, and the These considerations can be expressed in more mathematical
potential surfaces may intersect in &l 3- 8 dimensional term$4° by making expansions in fractional powers of the
subspacé? these are called conical intersections becauseratio of electronic to nuclear mass, a technique first intro-
the surfaces separate like a conical bifunnel in the other two duced by Born and Oppenheinfér.
internal degrees of freedom. Conical intersections, though The solution of the two coupled equations for the
not required in the general case, should not be 87 electronic amplitudes by first-order perturbation theory gives

The semiclassical methods make a distinction between thethe Massey critericfi*®*for adiabatic behavior, which may
guantum mechanical variablegelectronic coordinates) and  be written in modified form 286957
the classical mechanical variablBs(nuclear coordinates).

The latter are described by classical trajectof¢8, and E1,= (V= Vp)/h|d»R| (3.2.10)
the former are described by the time-dependent Stthger ) . )
equation If £1,> 1 the system can be considered adiabatic and the
Born—Oppenheimer approximation should be reasonable.
W (r ) = H(e')(r,R)‘P(r,t) (3.2.2) Nevertheless, even when the electronically nonadiabatic

transition probabilities are small, it is often important to be
where W and H® are respectively the electronic wave able to calculate them.
function and electronic Hamiltonian, and an overdot denotes ~ The adiabatic wave functiors and the adiabatic potential
a time derivative. Expanding the electronic wave function energy surface¥, can be written as the eigenvalues of the

in two electronically adiabatic eigenstates diabatic potential surface matrix
2 — Ull U12
W(rt) = Zlav(t)%(r;R(t)) (3.2.3) U= (Ulz U, (3.2.11)
=

- : . . . specificall
where the coefficient, is an electronic amplitude yields P y

the followi lectron densit
e following electron density v, = %[(Un"' U,,) — (U, + U11)2 _

2 2
(Y2 = ZZ a (Oa (O, (RO)E(REO) (3.2.4) 4(Uy3U,, — U0 (3.2.12)
y=1ly=1

The transformation between adiabatic)(and diabatic,)
where * denotes a complex conjugate. Therefore, the wave functions is

electronic density matrix is
¢,(riR) = > ¥, (NR)T,,(R) (3.2.13)
Y

GEENGE( (3.25)
Substituting eq 3.2.3 into eq 3.2.2 and using eq 3.2.5, the here
Hermitian character g3, the anti-Hermitian character of ;
s X e __[cosB(R) sin6(R)
and the semiclassical approximation T,,(R)= “sin6(R) cost(R) (3.2.15)
dg= R-Vg (3.2.6) with a mixing angled(R) given by
t

2U,,

for the time derivative yield the following coupled equations tan (R) = U 0. (3.2.15)

for the time evolution of the density matrix elemePit%: 1 22

P = —2Re¢>21R-d21) (3.2.7) A variety of methods have been proposed for carrying out

diabatic transformation®g#953.958972
The key assumption one makes when one uses a diabatic
representation is that the effect of the vector coupling

p1o= (P11 — Po)R*y, + ip(V, — V)R (3.2.8) @, | Vrly,,Omay be neglected as compared to the effect of
the scalar coupling),,. It is impossible, in general, to find

where Re denotes the real part and

with similar equations fop,, and p21, where a transformation that makes all components of the vector
coupling zero over a finite region of spat@?’*But one
d,, =[,|Vglg,U (3.2.9) can find transformations that reduce it everywhere to the

order of 1 atomic unit or less, and it always gets multiplied
The matrix elementd,,r are called the nonadiabatic coupling by a quantity like 14, which is small in atomic units, or
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like R, which is small in atomic units in the chemical energy is important, one can understand the interactions between
range. Even at the high energy of 10 eV, the speed of athe electronic states in terms of an easily obtaiffej!.269.970
proton is only 0.02 atomic units. diabatic basis. This provides a route to simple models as
Although there is no unique way to specify the diabatic well as to quantitative treatments. Even when one needs more
representation, it is useful to define it such that the complicated algorithms to obtain diabatic states that remove
momentum coupling has a negligible effect and that the all the singular coupling??diabatic states still often provide
diabatic electronic wave functions are smoothly varying useful models as well as the starting point for quantitative
functions ofR. The adiabatic states diagonalize the electronic dynamics.
Hamiltonian but are coupled by the nuclear momentum,
whereas diabatic states have no nuclear momentum couplinqe
although they are coupled by off-diagonal elemehtg) of
the electronic Hamiltonian. In the adiabatic representation
the coupling is given by a nonsmooth vecths, whereas it
is a smooth scalar in the diabatic representation; the vector
coupling is less convenient than the scalar one, but the
adiabatic representation has the advantage that one ca

optimize the adiabatic wave functions by the variational tat mternﬁl CONVErsIons In regions cIoEe to ﬁom_callmters_ec-
principle. The advantages of both representations may belions are characteristic steps in many photochemical reactions

combined by defining diabatic basis sets in terms of adia- WS One of the first steps forward in describing photochemi-
batic basis sets using orthogonal or unitary transforma- cal processes in terms of geometric features in exqted—state
tions 957.958,960,969,971,972 potential energy surfacé®-9%3 Decay of electron excitation

If we assume a 1D model in whidh;; crossedJ,, with energy in the vicinity of a conical intersection involves
U, approximately constant, we obtain the Landau entangled electronic and nuclear motion on a time scale of
ZeneP’>977 one-way transition probabilitp, 2, which is the tens of femtoseconds and has been studied in a variety of

single-passing probability of a nonadiabatic transition from systemg?+10%0
the adiabatic state 1 to the adiabatic state 2, and is given by However, one must also be careful not to oversimplify.
First of all, the most critical region is the region near the
27U, conical intersection seam in which the singular
Pz=1-ex)~—q0— qu (3.2.16)  termg74949-95L969.970 dominate the coupling, not just the
- U1 22 inal i ; ; ;
conical intersection seam itself. Second, the region around
the lowest-energyconical-intersection point may be insuf-
ficient even for a zero-order pictdf& 1033 As an analogy,
it is worthwhile to compare the situation to that for thermally
activated single-surface reactions, where we know that
transition state theory, which emphasizes the low-energy
region around a saddle point or the lowest energy portion of
a variational transition seam, is very useful when reaching
the transition state is a rare event in the free energy $éifse.
A similar approach can be applied to certain electronically
nonadiabatic reactiori€3®> However, returning to the elec-
tronically adiabatic case, if one wants to calculate branching
ratios when the total energy significantly exceeds the energy
of the controlling dynamical bottleneck® then a transition
state picture may be less appropriate, and one needs to invoke
less reliable statistical assumptiofd?17720.1036 Closely

The conversion of electronic energy to nuclear-motion
nergy by decay from an electronically excited singlet or
doublet state to the ground electronic state is called internal
conversion, radiationless decay, or an electronically non-
adiabatic transition. Internal conversion is often the critical
first step in photochemical processes. The proposals, in
arious forms, by Telle?4%987Zimmermar’?® and MichP8°

dz dz

where Z is the component oR along the path, and all
guantities are evaluated at the crossing point. Important
further improvements of the Landad@ener model were
presented in subsequent ye¥i&?83

Another general class of models is appropriate for the
Rosen-Zener-Demkov case where the two diabatic surfaces
do not cros$8+985Although such simple models are useful
for showing the nature of the dependence of transition
probabilities on key variables, they are too simplified to
provide quantitative results for real systems, and the best
available option for practical work is nonadiabatic trajectory
calculations.

A key reason multidimensional trajectory calculations are
required is the prevalence of conical intersections, which are . : ,
intrinsically multidimensional. When one encounters a local €/atéd problematic systems involve potential energy surfaces
minimum (along a path) of the gap between two adiabatic Where dynamical branching is controlled by trajectories
potential energy surfaces, almost always this will be because!®2ving @ plateau region in various directions or by trajec-
one has passed near a conical intersection, rather than a truf?ries that reach points of no return from unequilibrated
avoided crossing corresponding to a finite local minimum fegions of phase Spack#18.95910371039 These kinds of
in the gap®*’ In an adiabatic representation, the nonadiabatic Scenarios are probably even more prominent in elect_ronlcally
coupling becomes singular at conical intersecti§f85but nonadiabatic systems, where the total energy is often
this singularity can always be removed by transformation to Sufficient to reach large portions of one or more conical
a diabatic representatidff:94%-953.969.97098¢rthermore, one  intersection seams rather than just their lowest-energy part.

can shoW*® by expansioff in powers ofmdJu, wherem is In such cases one needs to map out the characteristics of
the mass of an electron andis a nuclear mass, that in the seam or seams more fully. Even in such cases, statistical
normal molecular situations, apart from the singularity, the theories are availabfé!"1%"but they are not always valid
effect of the rest of the nonadiabatic coupling can be expectedbecause the probability of decay at one or another portion
to be small in the BorrOppenheimer sense. Therefore, the of the seam may be determined by initial conditions (as
nonadiabatic coupling is often dominated by small regions determined, for example, by FranekCondon factors) or by
around a conical intersection (regions in which the singular inertial or other dynamical factors, not just by statistics. Thus,
leading term in the nonadiabatic coupling dominates the otherone requires trajectory calculations, such as the surface
terms). Furthermore, in high-symmetry cases or when only hopping or decay-of-mixing methods discussed below, or
the lowest-energy part of the seam of conical intersections wave packet calculations.
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Finally, it is important to keep in mind that although method by allowing nonlocal surface hof3%/19%8 This
conical intersections are not rare, very many interesting problem is also partially ameliorated by methods that
processes do not involve them because the seam of diabatipropagate wave packets instead of trajectofigsl0ss
crossing does not intersect a seam of zero diabatic couplingalthough these are more expensive.

at an accessible geometry or because the diabats do not cross. The semiclassical Ehrenfest method is quite different; in
Nevertheless, a diabatic picture can still be very useful. particular, in this method the effective PES is given by the
Furthermore, in cases such as this, multidimensional dynam-expectation value of the electronic Hamiltonian computed
ics calculations (nonadiabatic trajectories or wave packets)with the current density matrix, with no hops. Because the
are very important because 1D models of the dynamics dotrajectories are propagated on this averaged potential, the
not appear to be generally valid even in the absence ofresults are independent of the choice of representation
conical intersectiof* (adiabatic or diabatic) of the electronic wave function. This
The use of diabatic potential energy surfaces is expectedis an important advantage because the surface hopping
to greatly ease the fitting of potential energy surfaces becausemethods can be very inaccurate if one chooses to use the
(i) diabatic surfaces are much smoother than adiabatic oneswrong representation. The most apppropriate basis in which
and (ii) the couplings in diabatic representations are smooth,to carry out the calculations would be the “pointer” ba-
scalar functions, whereas in adiabatic representations theysis°6¢:1067put this is usually not known. An approximate
are rapidly varying, singular, vector functions. However, one rule, called the Calaveras County criterion, for determining
promising approach to fitting the adiabatic surfaces, at leastthis basis has been presenté.
for exploratory dynamics, is the SRP method (see discussion The biggest drawback of the semiclassical Ehrenfest
in Section 2.3), which has been extended to non-Born method is that trajectories propagating on an average surface
Oppenheimer problems by Marez-Nurez et alt*® mayfinish on an average surface, which corresponds to being
Nonadiabatic trajectory methods based on ensembles ofin a mixed electronic state that is not an allowed final state
independent trajectories are especially relevant in the searchecause it is not an eigenvalue of the asymptotic electronic
for simple guiding pictures because they lead to visualizable Hamiltonian. In such a case the final electronic, vibrational,
dynamics. Two standard methods based on classical trajec+otational, and translational energies of the products are not
tories are the trajectory surface hopping (TSH04e-1054 realistic. This problem has been solved by including decay-
approach and Ehrenfest method or self-consistent potentialof-mixing terms in egs 3.2.7 and 3.28%079The mixed
(SCPY56957.1054.1055npr0ach. The TSH method was initially — State is thereby resolved into one or another pure electronic
suggested by Nikiti#*° and Tully and Prestot?* In these state as the trajectory leaves the region of interstate coupling.
early studies, the trajectories were propagated on the adiabatiddding the decay of mixing terms makes the trajectories
surfaces, and probability for trajectories to hop was evaluateddepend on representation (adiabatic or diabatic), but the
by the LandatZener model. A more complete theory in dependence is small.
which the trajectories are coupled to eqs 3.2.3 for arbitrary  The self-consistent decay of mixing (SCDM) metPtSd
surface characteristics was proposed éteand successively  and the coherent switching decay of mixing (CSDM)
refinedt0521053.10561059 |n general, trajectories may be propa- method®”! both incorporate such decay terms, but they
gated on either the adiabatic or diabatic surfaces. require only about the same amount of computational effort
Tully’s fewest switches scherff§1952js particularly ap- ~ and data as the other methods we have discussed. The decay
pealing because it employs the fewest number of switchesof mixing rate must be based on two different kinds of
necessary to obtain ensemble-averaged consistency betweegpnsideration; it has a physical component corresponding to
the quantum and classical degrees of freedom in the limit of physical population dynamics and dephasitigbut this is
Vi(R) = Vo(R). In this method, self-consistency is ac- nhotidentical to the algorithmic decay rate required in order
complished by propagating an ensemble of trajectories onthat an ensemble of trajectories with a specific semiclass-
the diagonal potential matrix elements, with each trajectory ical prescription for electronic state switching and nuclear
being independent of the others, and with the probability motion will correctly simulate a quantum mechanical wave
that a trajectory that is propagating on one potential surface packet*®°* The decay of mixing algorithm is based on
will hop to another being determined such that the fraction both considerations. It has performed quite well in compari-
of trajectories propagating on surfage is (if energy son to accurate quantum dynamics for electronically nona-
conservation permits) given ky,. diabatic atom-diatom reaction8}®.1067.1071.1073197and the
A serious problem with the TSH method is that hops from SCDM and CSDM are the most accurate available nonadia-

the lower surface to the upper surface can be forbidden by Patic trajectory methods.

conservation of energy or momentum (frustrated hops), and There is a fundamental difference between nonadiabatic
this destroys the self-consistency of the coupled treatmentcoupling in internal coordinates (vibronic interactions, as
of electronic and nuclear motidf% These frustrated hops discussed so far) and nonadiabatic coupling caused by overall
have two cause¥’ (1) the original fewest-switches metHéd rotation. Most attention has been paid to the former. The
does not allow tunneling into a new electronic state, which terms in the rotational kinetic energy that couple internal
is a consequence of a classical trajectory approach, and (2)motions such as vibrations and electronic degrees of freedom
it does not properly treat electronic state dephasing, which are called Coriolis terms. In polyatomic molecules, electronic
is a result of the formulation of the hopping probability. The Coriolis coupling has been much less widely studied than
frustrated hops associated with (1) are considered physicallyvibronic interactions, although the surface hopping method
meaningful and the transition between states should becan include this kind of transitiol”®> The different mech-
allowed, whereas the hops associated with (2) are notanisms have been compared elsew!&r#.176

physically meaningful and should be ignored. New surface  The discussion has centered so far on spin-conserving
hopping methods identify the frustrated hops associated with processes, which are often promoted by intersections occur-
tunneling and attempt to improve the self-consistency of the ring in at most 8l — 8 dimensions. In contrast, singlet triplet
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intersections may occur on aN3— 7)-dimensional seam.

Fernandez-Ramos et al.

When the reaction is diffusion controlled, the concentration

Electronic structure calculations may be used to characterizeof B molecules in the vicinity of A molecules becomes

the intersection&)’"1082 especially by calculating the mini-
mum on the seam of surface crossing (MSX). Dynamical
theories for predicting the probabilities of spin-forbidden
processes have been develop&g1080.1081,1083

4. Condensed-Phase Bimolecular Reactions
Many reactions of interest occur either in solution or at a

gas-surface interface. In some reactions, the solvent or the

surface has only a small effect, but usually it has a large
effect. For instance in liquids, the rates of unimolecular
reactions between nonpolar species are sometimes roughl
independent of the type of solvent, but in the case of polar

molecules the rates may be speeded up or slowed down by
large factors in liquid solution as compared to the gas phase,

even for nonpolar solvents. One example is the Claisen
rearrangement of the polar molecule allyl vinyl ether to
4-pentenal, which is speeded up by about 3 orders of

depleted??11%0The equation governing the diffusion of B
molecules toward A is Fick’s first law of diffusion. The
number of B molecules per unit time reaching a spherical
surface of area#R? at a distancer from A is
d[B
J= MDABRZ% (4.1.4)

whereDgg is the binary diffusion coefficient. By solving eq
4.1.4 with an appropriate boundary condifiBhatr = oco,
whereog is a collision diameter, one can again derive eq

Y4.1.2 where

ko = 4noD,g (4.1.5)
Equation 4.1.5 is appropriate in the case where intermo-

lecular forces are neglected f& > ocq. If V(0co) Cannot

be neglected, as for the reaction of two ions of chajge

magnitude in aqueous solvation as compared to the gasandgg for which
phase; even in the nonpolar solvent hexadecane it is speeded

up by about one order magnitué+1°Bimolecular reac-

tions involving ions and polar molecules generally depend
strongly on the solvent. The key consideration is often the
difference in solvation free energy of the transition state and

the reactants, but in bimolecular reactions one must also

0l
€0

V(og) = (4.1.6)

col

wheree is the dielectric constant, then eq 4.1.2 is replaced
by

consider long-range interactions and gradients of concentra-

tion. Reactions in solids show similar effects although the
slower diffusion through solids is often a dominant consid-

eration. The effect of a solid surface, such as ice, a metal

oxide, or a metal, on reactivity is often so large that the

kD kze_ﬁv(gcol)

g (4.1.7)

surface is considered to be a catalyst. Processes at metator slow reactions, there should be a substantial barrier

surfaces often show strong effects of Be@ppenheimer
breakdowrt%¢ Overviews of the application of transition
state theory to liquid-phase and setigas interface reactions
are available elsewhef#349:356,1034,1082098 gnd key theoreti-
cal developments are summarized in the context of this
review in the following two subsections.

4.1. Reactions in Liquids

In general, a reaction in solution can be modeled by the
following mechanism

Ko 3
A + B==AB—Products (4.1.1)

-D
where AB is the transient complex formed by the encounter
of the two molecules. The rate of this reaction may be derived
by applying the steady-state condition to the complex, which
yields

_ Kok

A typical value ofkp is 4 x 10° Mt s If k, > k_p the
reaction is controlled by diffusion. In the opposite case of
k_p > k; the bimolecular reaction rate is

keq = I‘<k2

whereK = kp/k_p. When eq 4.1.3 holds the existence of the
complex becomes irrelevant (the numeratorkofexactly
cancels the denominator &), which is a special case of
the general rule that an intermediate before the rate-
determining step has no effect on the rate.

K (4.1.2)

(4.1.3)

for the second step of reaction 4.1.1, and therefgre>
ko exp[—pV(0e0)], and eq 4.1.7 reduces to

k= kz eXp[_ﬁV(Gcol)]

This equation has been used to interpret reactions between
ions. The substitution of eq 4.1.6 into eq 4.1.8 allows one to
obtain an effective value af., by plotting the logarithm of

k versus 4.

Whenk, < k_p, reactions in solution can be modeled by
TST. Even when this relation does not hold, TST may be
used to modek,. Using the formalism of eq 2.2.4, we can
express the entire effect of solvation on the reaction rate
(eitherkeq or ko) as follows:

(4.1.8)

AAG,, = cht(l) B Achl(g) (4.1.9a)

= AGH(l) — AGE(g) — RTIn [y(Tl) — y(T.0)]
(4.1.9b)

where | and g denote the liquid-phase and gas-phase
environments, respectively. With this fundamental equation
available to organize the discussion, we can distinguish three
levels of dynamical theory for calculating bimolecular
reaction rates in liquid solutions. These levels will be called
separable equilibrium solvation (SES), equilibrium solvation
path (ESP), and nonequilibrium solvation (NES.)

A key result needed to relate condensed-phase thermo-
chemistry to the gas phase is the equation for the solvation
of a single substancé?”.1102

1) = G(@) + AGYT) (4.1.10)
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whereAG is the standard-state free energy of solvation of obtained by eq 4.1.13 or eq 4.1.14, and the transmission
the substance in question. Therefore, the free energy changéoefficient is based on the gas-phase minimum energy path.

of eq 2.1.7 becomes Separable equilibrium solvation often provides quite useful
results with a minimum of effort:%6
AGY(l) = AG(g) + AAGS (4.1.11) The separable assumption for the solute reaction path is

removed in the ESP approximatiéff:611,1092.1103,1105|n
where the first delta in the last term, like that in eq 2.1.7, particular, one introduces eq 4.1.14 at all stages of the
denotes the difference between product and reactants, andgalculation. Thus, for example, one finds a new minimum
the second delta in this term, like the one in eq 4.1.10, refersenergy path using¥(R) instead ofV(R).
to the solvation process. By the quasithermodynamic ana- The SES and ESP approximations assume a clear separa-
logue we also have tion of solute and solvent in that the generalized transition
state dividing surface is defined entirely in terms of solute
AG%O(I) = AG?’O(g) + ATAGg (4.1.12) coordinateR. This restriction is sometimes important, and
even the best dividing surface defined in this way may
whereA* denotes the difference between the transition state involve significant amounts of recrossing. This effect is called
and reactants. solvent friction or nonequilibrium solvation. There are several
Equation 4.1.12 also applies to generalized transition statespossible ways to treat this kind of effect, the most obvious
However, to calculate transmission coefficients we need notof which involve treating some or all of the solvent
just the free energy of activation profile but also effective coordinates explicitly on the same footing as the solute.
potentials for estimating tunneling contributions and recross- Treating a few solvent molecules explicitly and the rest
ing factors. For this purpose, we use the canonical meanimplicitly by means of AGYT) or AG«R,T) functions is
shape approximatioi> called a mixed discrete-continuum motiét110 a semi-
continuum modet!'%or a cluster-continuum mod#&i* The
IGIR.T) collection of the solute and all explicit solvent molecules is
T (4.1.13) called the supermolecule. A serious problem with this
approach is that the number of conformers grows very rapidly
whereV(R) is the gas-phase potential energy of the solute, as one adds more solvent molecules to the supermolecule
R denotes the collection of all the atomic coordinates of the due to the large number of solvation sites and solvent
solute, W(R) is the effective potential of the solute in the molecules orie.ntatio_ns, and thr—; poten_tial surface becomes
liquid phase, andGYR,T) is the standard-state free energy Very anharmonic, so it becomes impractical to compute solute
of solvation of the rigid solute. In practice, one approximates Partition functions by the usual methods. This problem can
eq 4.1.13 by the zero-order canonical mean shape ap-Pecome serious with even as few as two or three solvent
proximatior103 molecules.
Another approach to nonequilibrium solvation is to include
WR,T) = V(R) + AG‘;(R,T) (4.1.14) collective solvent coordinates (as opposed to actual atomic
coordinates of individual solvent molecules) in the solute
The right-hand side of eq 4.1.14 is calé®d the potential  (or supermolecule) Hamiltonia#12° Such collective
of mean force. Thus the zero-order canonical-mean-shapecoordinates can represent, e.g., the electric polarization of
approximation consists of setting the effective potential equal the solvent, which is not necessarily in equilibrium with
to the potential of mean force. solute motion. The collective solvent approach may be used
If the solute hasN atoms, the potential of mean force to derive a simple approximation, called Gretdynes
W(R,T) is a function of 3 coordinates and corresponds to theory;%93199.112tg the nonequilibrium solvation effect based
averaging the solvent forces over a thermal ensemble ofon the friction on the reaction coordinatén the vicinity of
solvent coordinates. Another useful quantity is the 1D the maximum of the 1D potential of mean for&#(z).
potential of mean forcé(z) which corresponds to averaging Typically the Grote-Hynes transmission coefficient is in the
over not only the solvent but alsd\3— 1 of the solute  range 0.3<T < 1. Chuang and Truhl&*made a quantized
coordinates, leaving a function of a single pre-selected VTST study of the reaction H- CH;OH — H; + CH,OH
coordinate, usually taken as a physically motivated reaction in water at 298 K with 21 solute degrees of freedom and
coordinate. Most generallycould be a function not only of ~ one collective solvent mode. They calculatéghion = 0.4
the A solute coordinates but also of solvent coordinates; it Without tunneling andicion = 0.5 with tunneling.

W(R) = V(R) + AGIR,T) + 3

could even be a collective solvent coordinate. A question that arises is whether nonequilibrium solvation
In the SES approximatioH% one calculates the firstterm is included in the free energy of activation or in the
of eq 4.1.9b by using the approximation transmission coefficiertt®® When a solvent degree of

freedom is important for specifying the least-recrossed

GY(l) = GX(g) + AGYR,T) (4.1.15)  dividing surface, but it is not included in the computational

reaction coordinate, the effect shows up as a reduced
for reactants, wherR. is the equilibrium gas-phase geom- transmission coefficient. If the effect is recognized, though,

etry, and by the approximation and coupled motion is included in the reaction coordinate,
then the effect shows up in the free energy of activation.
GHl) = GE°+ ATAGYR*T) (4.1.16) Another approach to nonequilibrium solvation has been

presented by Warshel and co-workers, first for electronically
for transition states, wherR* is the gas-phase transition- nonadiabatic electron-transfer reacti$f$'22and then for
state geometry. For the second term of eq 4.1.9b, the effectiveelectronically adiabatic reactiof®:11231125|n this approach,
potential used to calculate the transmission coefficient is the solvent is included in the reaction coordinate, even for
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electronically adiabatic reactions, as an electronically diabatic paths without defining a progress coordinate such as the
energy gap?® computed from an empirical valence bond coordinate used in umbrella sampling. Having found the
representation of the potential energy surface. This approachensemble of paths, one calculates the transmission coefficient
has advantages when nonequilibrium solvation effects areand reaction rate as a flux correlation function (see Section
large. 2.4.8). This formalism, like EA-VTST, is particularly
Finally, there are cases where it is necessary to treat themotivated by the fact that liquid-phase reactions involve a
whole system explicitly. Two frameworks are available for myriad of saddle points, often differing only in terms of
calculating rate constants in such cases. One is calledsolvent conformations, and each saddle point has its own
ensemble-averaged variational transition state theory (EA- minimum-energy path. There is an ensemble of system
VTST).1126-1130 This method lends itself well to including trajectories in the valley corresponding to each saddle point
quantum effects; for this purpose the system is divided into and associated minimum-energy path, and this ensemble may
a primary zone and a secondary zone, and quantum effectbe treated by VTST, but there is an even more diverse
are included in the former. In a first stage one uses a pre-ensemble associated with the ensemble of saddle points and
selected reaction coordinatecalled a distinguished reaction minimum energy reaction paths. EA-VTST and transition

coordinate, to compute a 1D potential of mean fovdg). path sampling provide statistical mechanical algorithms for
Then one calculates the reaction rate by eq 2.2.3 with theincluding the contributions of trajectories sampling this broad
approximation: ensemble of reaction valleys.

Another important dynamical issue is decoherence, whose
AG,(T) = maxiW(2) — minW(2) (4.1.17) effects have recently been elucidated by Han and Brtifter
z z for a model collinear reaction in a solvent that causes
_ N decoherence but not soluteolvent energy transfer. The
where the maximum corresponds to the transition state andeffect of the solvent is to increase the energy dispersion in
the minimum corresponds to reactants. The theory is generakhe solute. In the tunneling regime (below threshold), this
enough to accommodate any reasonable choice of reactionncreases the fraction of the wave packet with energy above
coordinate for z; note though that eq 4.1.17 is only valid for the barrier and hence increases the reaction probability.
a planar density surface, which implies a rectilinear reaction fFor reactions in liquid-phase solution, progress has
coordinate, as assumed in eq 2.4.16. For a more generatequired not only new formulations of the dynamics but also
dividing surface, there is an additional tefff;*** which is new methods for calculating the potential energy surface.
often neglected (see Section 2.4.5). One can incorporate|n some cases, one uses a model for the potential energy
tunneling in this theory and allow for the participation of syrface and obtains the required free energies by statistical
secondary-zone coordinates in the reaction coordinate byaveraging. In other cases, for example, when using continuum
stages that employ a static-secondary-zone (SSZ) approximagpproximations for the solve#ft?” one directly calculates the
tion or an equilibrium-secondary-zone (ESZ) approxima- free energy of solvation without an explicit model for the
t'O”-”%’l_lzg'mo _ ) potential energy of solvation. Explicit models of the solvent,
Equation 4.1.17 has been used frequently, in a variety of especially molecular mechanit? are also in widespread
contexts, to study organic bimolecular reactions in liquid yse, and the coupling between the degrees of freedom treated
solutions}%®13+1145 with various levels of approximation  py molecular mechanics and those treated by quantum
in the calculation ofW(2). For example,z may be a  mechanics may be handled at various levels of sophisti-
distinguished reaction coordinate, or the reaction coordinate cation1162-1165 The effective fragment modéf® provides a
may be optimized in the gas-phase or in the liquid-phase way to model ab initio solvation effects in a computationally
solution. Furthermore, one can distinguish various degreesefficient way, and it has been validated for the bimolecular
of coupling between the solute and the solvent in modeling penshutkin reaction in aqueous solutitf’
the potential energy surface, which is discussed further Ejectron transfer reactions present a very special class of
below. In addition, dual-level methods originally developed reactions in that they may be electronically nonadiabatic and
(see Section 2.4.5) for gas-phase calculations may be useqlnay show large nonequilibrium effedd211681172 There is
to improve the accuracy in an efficient wéy* a considerable amount of interesting work using theoretical

In some cases, when it is not clear a priori how to choose gpproaches originally developed for electron transfer to treat
the progress variablg, one first explores the detailed proader classes of reactiof&1120.1122,1125,1171183

dynamical mechanism by calculating the potential of mean
f(;fr(?aebéz a function of twig=14314% or moré™>% 4 9 "Reactions on Surfaces and in Solids
vari .

An example of a complicated reaction coordinate that can Adsorption is the process of attachment of particles to a
be used to describe a complex process is the modified-centersurface; the inverse process is desorption. For a gas molecule
of-excess-charge reaction coordinate developed to study long/A(9) (adsorbate), which is binding to the surface S (the
range proton-transfer kinetié&° adsorbent), the processes of adsorption and desorption can

Although thorough coverage of enzyme dynamics is De represented by the chemical equation
beyond the scope of the present review, we note that there
has been considerable recent progress in including tun- A(g) + S—A-S (4.2.2)
nelingt®%1098,11261130,115+1156 and recrossirf§® in the trans-
mission coefficient even for reactions as complicated as and its reverse, respectively. The molecules of the gas can
enzyme-catalyzed reactions. attach to the surface in two ways: (1) by physisorption, i.e.,

The second general formalism for calculating reaction rates the molecules of A are bound to the adsorbent by van der
when a collection of paths and the entire system must be Waals interactions, which in general are weak, and (2) by
explicitly considered is transition path sampli§§$°0.11571159 chemisorption, that is, the molecules stick to the surface by
in which one statistically samples an ensemble of reaction forming chemical bonds. In general, the association to form
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a physisorption complex has a loose transition state, andtheith atom of the surface. The electronic structure energies
VTST is needed to define a transition state, whereas may be calculated by DFT with a generalized gradient
chemisorption reactions often (not always) have tight transi- approximation. This procedure has been used to build the

tion states, and the saddle point provides a starting point for
identifying the transition state.

Bimolecular chemical reactions at a surfd€&118¢ can
take place by two mechanisri$}1187.1188%he Langmuir-
Hinshelwood (LH) mechanism

B-S+ A-S— products (4.2.2)
or the Eley-Rideal (ER) mechanism
B(g) + A-S— products (4.2.3)

Although the LH mechanism is very comm&ii?-1198 hoth
theoretical® 1212 and experimentl®’.12131220  stydies

show that the ER mechanism is also possible, and it tends

to lead to higher energy release because the B-S chemi
sorption energy needs not be overcome. An intermediate
mechanism is possible in which B is partially accommo-
dated to the surface (trapped as “hot precursor”) but not
completely equilibrated to it prior to reactidfft 1225
Both wave aCké%01,1203,1205,1211,1212,1223 and trajec-
tory1199,1200,1202,1204,1296209,1223—1225 Calculations have been
used to study the ER and hot precursor mechanisms.
Electronic structure calculations can be very helpful in sorting
out the mechanismig26.1227

Extended LEPS potentials have been used recently for

PESs of H + Pd(111)}19%1233 H, + Pt(111), H +
Cu(100)t2341235H, + Pt(211)}%%¢ and H + Ru(0001}%%"
systems.

Variational transition state theory with multidimensional
tunneling is well suited for the study of molecular reactions
at surfaceg?241197.1238

Chemical reaction dynamics have also been studied at
liguid surfaced?3%-1241

4.3. Tunneling at Low Temperature

At low enough temperature, tunneling often causes ex-
ceptionally large amounts of concave curvature in Arrhenius
plots. In analyzing this, some workers assume that the
tunneling contribution is independent of temperaftifé.

Unfortunately, this is not true. The rate constant becomes
independent of temperature when all reaction occurs out of
the ground state. Since all medium-sized or large molecules
have low-frequency modes, once must go to very low
temperatures (significantly below 100 K, maybe even below
10 K, depending on the molecule and the process) for all
the molecules to react out of the ground state.

We may distinguish three regimes:

Regime I: Most of the reaction occurs from the ground
state of reactants. We can call this the ground-state tunneling

regime. The rate constant is independent of temperature in
this regime.

Regime II: Most of the reaction occurs by tunneling but
out of a range of possible initial states. We can call this the
d activated tunneling regime. With very rare exceptions, this
is the regime we need to be concerned about when we
consider tunneling in organic chemistry. The rate constant
is not independent of temperature in this regime, even if more
than 99% of the reactive events occur by tunneling.

Regime Ill: Most of the reaction occurs by an overbarrier
process.

several purposes such as the study of reactions ahid D,
at a Cu(001) surfac®?é-1230The Shepard method, discussed
at length in Section 2.3, has also extended to molecule
surface interactions31.1232

For the case of diatomic molecules interacting with a soli
surface, it is possible to build a six-dimensional PES as a
function of two position vectors; one of therR(X,Y,2),
points from the molecular center to some point over the
surface (with theZ axis chosen perpendicular to the surface),
whereas the other vector, usually defined in spherical
coordinatesr(6,¢), indicates the position of atoBirelative )
to atom A in the AB diatomic molecule. The usual procedure ~ One could also say that there are three components in the
is to fix X, Y, 6, and ¢, so the molecule remains in the rate constant: tunneling from the g_round state, tunneling
particular configuration with respect to the surface, and from other states, and the overbarrier component. At low
several ab initio points are calculated on a grid of different €Nough temperature, any reaction must occur in regime |,
r andZ values. The procedure is then repeated for different But of course the solvent may freeze before one gets there.
X, Y, 6, ¢ configurations. Busnego et ¥ developed the If one considers reaction on a solid surface or simple
corrugation-reducing procedure (CRP) that allows an efficient reactions within solids (such as low-temperature matrices),

and accurate interpolation of this 6D PES. Specifically, the this freezing does not get in the way of watching the
potential is divided into three parts: transition from Il to Il to | as the temperature lowers. Then

it can be shown that the rate constant does become a constant
VeP = %P 4 330 4 53P (4.2.4)

at low enough temperature, although this is very rarely
observed?*® What is usually observed, both under these
wherel®® is an interpolation function that contains all the conquns and at higher temperatures in Ilqwds, is a concave
formation with the exception of the atonsubstrate interac- ~ Arrhenius plot where (as the temperature is lowered) we see
tions, which are incorporated i° and J%°, respectively a flattening that corresponds to the beginning of an approach
’ B ! .
The success of the CRP is based on the smoothne8 of 1© & constant value. - . .
when compared with the highly corrugat@P potential. We can describe this at a higher level of mathematical

3D 3D . precision as follows. If the Arrhenius plot is straight at high
Egepf;ggtifni% and Jg” are constructed by applying the T (an approximation, but often one we are willing to make,

at least in the present context) and is straight and constant
in the low-T limit, then it has no curvature (a straight line
has a zero second derivative) in either of these limits. Some
place between these two regimes, it must have the maximum
absolute value of the curvature. We can call this the transition
where 1P is the atomic equivalent of®®, and Q*°(R) temperature. This imot a point to associate with the
represents the interaction between the adsorbing atom andransition from tunneling not being important to tunneling

37 =1 4+ TOP(R)

(4.2.5)
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dominating (Il — II); actually this is the transition from  LCG3
regime Il to regime [2**Since tunneling dominates in regime

1, this transition temperature is not the onset of tunneling.
Tunneling is important at a much higher temperature than LCG4
this. For example, hydrogen transfer reactions (and also
proton and hydride transfer reactions) with barriers of a few
kcal/mol or higher are almost always dominated by tunneling | gp

at room temperature. LEPS

All real Arrhenius plots are curved. If a reaction is LH
measured over a narrow temperature range, the curvature oMCCM
the Arrhenius plot will often be less than experimental errors MCMM
and so not be observable. A higher-than-usual curvature atME
low temperature is often an indication of tunneling, and it MEP
may even be a strong indication, but this is a quantitative
issue, not simply an issue of equating curvature with
tunneling. Reactions with observable curvature are sometimesyt
proceeding mainly over the barrier (for example, Arrhenius ,omT
plots are often quite curved at combustion temperatures due,vT
to anharmonicity-not tunneling); and reactions without NES
observable curvature are often nevertheless proceeding)MST

MP2

mainly by tunneling. PE
i J PST

- PT2

5. Concluding Remarks QCT

There has been great progress in our ability to model the RODS
kinetics of bimolecular reactions. This derives from (i) Rrkm
improved methods for generating and using reactive potentialscpm
energy surfaces, especially implicit potential energy surfacesscT
generated by direct dynamics, (ii) improved dynamical SES
algorithms, including practical methods for finding varia- S\2
tional transition states, well-validated multidimensional SPT
methods for including tunneling, and master equation SRP
methods for treating nonequilibrium distributions, especially TSH
in multiwell, multi-arrangement reactions, and (iii) efficient TST

methods for interfacing i and ii. We anticipate continued 8[5)

improvements in all three areas. VB
VClI

6. Glossary of Acronyms VRC
VTST

Acronyms that are not used after they are defined are notWFT
included here. WKB

Fernandez-Ramos et al.

version 3 of the LCT approximation when used with
the ground-state approximation for the transmission
coefficient

version 4 of the LCT approximation when used with
the ground-state approximation for the transmission
coefficient

large-curvature tunneling

London-Eyring—Polanyi

Londonr-Eyring—Polanyi-Sato

Langmuir—Hinshelwood

multicoefficient correlation method

multi-configuration molecular mechanics

master equation

minimum-energy path

molecular mechanics

Mgller—Plesset second-order perturbation theory (for
electronic structure)

multidimensional tunneling

microcanonically optimized OMT

microcanonical variational (transition-state) theory

nonequilibrium solvation

optimized MT

potential energy surface

phase-space theory

second-order perturbation theory (for vibration)

quasiclassical trajectory

reactant

reorientation (of the) dividing surface

Rice—RamspergerKasset-Marcus

self-consistent decay of mixing

small-curvature tunneling

separable equilibrium solvation

bimolecular nucleophilic substitution

simple perturbation theory

specific reaction parameter(s)

trajectory surface hopping

transition state theory

unified dynamical theory

(microcanonical) unified statistical theory

valence bond

vibrational configuration interaction

variable-reaction ccordinate

variational TST

wave function theory

Wentzel-Brillouin—Kramers
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