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1. Introduction

This review is concerned with the theoretical and com-
putational modeling of bimolecular reactions, especially with
generally applicable methods for kinetics (i.e., overall rates
as opposed to detailed dynamics). It includes a basic
theoretical framework that can be used for gas-phase thermal
reactions, gas-phase microcanonical and state-selected reac-
tions, and condensed-phase chemical reactions. The treatment
of gas-phase thermal reactions includes separate discussions
of simple direct reactions over a barrier, which usually have
tight transition states and reactions proceeding over a
chemical potential well, which can have a number of
additional complications, such as barrierless addition poten-
tials (which generally have loose, flexible transition states),
competitive reaction pathways, isomerizations between mul-
tiple wells, and pressure-dependent energy transfer processes.
The section on thermal reactions has a heavy emphasis on
(generalized) transition state theory (TST) including multi-
dimensional tunneling because this theory provides the best
available method to calculate thermal rate constants for all
but the very simplest systems. The section on state-selective
reactions and product state distributions includes an introduc-
tion to the theory of electronically nonadiabatic reactions
and coupled potential energy surfaces, as required for
modeling photochemical and chemiluminescent reactions.
The section on bimolecular reactions in liquid solution
considers diffusion control and equilibrium and nonequilib-
rium solvation.

2. Gas-Phase Thermal Reactions

2.1. Thermodynamics: Enthalpies and Free
Energies of Reaction

The rate constant (or, equivalently, rate coefficient) for a
pressure-independent bimolecular reaction is defined experi-
mentally as follows. Two substances A and B (reactants)
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undergo an elementary gas-phase reaction

where C1, ..., Cn are products. Equation 2.1.1 withn ) 3
implies that three products are formed from two reactants.
This happens quite frequently in very exothermic reactions,
where a product can be formed with a very large amount of
internal energy, enough that the molecule can dissociate
spontaneously before it is stabilized by collisions with other
molecules. One might view this physically as a two-step
process: A+ B f C1 + C2C3* followed by C2C3* f C2 +
C3. Similarly, again for n ) 3, the reverse formally
termolecular reactions may be described as two bimolecular
reactions. (We shall not be concerned with the mechanism
of termolecular reactions in this review.)

Number densities, that is, concentrations (denoted [A], [B],
...) can be monitored as a function of time and fitted to the
phenomenological second-order rate law

where k and k′ are the forward and reverse temperature-
dependent rate constants (or rate coefficients), respectively.
The equilibrium constant,K, for the process is given by the
quotient of the forward and reverse rate constants,1 and the
reaction quotient is defined by

Usually the rate constant is measured under conditions where
the second term in eq 2.1.2 is negligible. In this case,k gives
the total rate constant for formation of all products. Com-
plications arise if the states of A or B are not thermally
equilibrated or if back reaction occurs from unequilibrated
products.1

The temperature-dependent equilibrium constant is related
to the standard-state Gibbs free energy of reaction,∆GT

o(T)
at temperatureT by

whereR is the gas constant,QK
o is the value of the reaction

quotient at the standard state, and

where ∆HT
o and ∆ST

o are the standard-state enthalpy and
entropy of reaction, respectively. The standard state for gas-
phase molecules can be an ideal gas at a partial pressure of
1 atm or any stated concentration, e.g., 1 cm3 molecule-1 or
1 mol L-1; the standard-state for liquid-phase solutes can
be an ideal solution with a concentration of 1 mol L-1, etc.

In general, the free energy change upon reaction is

If the free energy change is zero, the reaction is at
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K ) QK
o(T) exp[-∆GT

o/RT] (2.1.4)

∆GT
o(T) ) ∆HT

o(T) - T∆SI
o (2.1.5)

∆G ) RT ln
QK

K
(2.1.6)
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equilibrium. If ∆GT
o or ∆G is negative, the reaction may be

called exergonic (work-producing), and if either of these

quantities is positive, the reaction may be called endergonic
(work-consuming).

The enthalpy of reaction (heat of reaction at constant
pressure) is negative for an exothermic reaction (which
releases heat) and positive for an endothermic reaction (which
absorbs heat) and can be obtained at a given temperature
from the enthalpies of formation of the reactants and
products. For an electronically adiabatic reaction, the en-
thalpy of reaction at 0 K may be calculated quantum
mechanically as the change in Born-Oppenheimer electronic
energy (which includes nuclear repulsion) plus the change
in zero point vibrational energy. The Born-Oppenheimer
electronic energy is the potential energy surface for nuclear
motion. A reaction with a negative potential energy of
reaction is called exoergic, and one with a positive energy
of reaction is called endoergic. A reaction with a negative
change in free energy is called exergonic, and one with a
positive change in free energy is called endergonic.

The enthalpy of reaction can also be computed by Hess’s
law as the sum of the heats of formation of the products
minus the sum of the heats of formation of reactants. Recent
progress in electronic structure calculations2 allows one to
compute enthalpies of formation with chemical accuracy3

(∼1 kcal/mol) for most systems with up to about 50
electrons.4 For larger systems, one should probably judge
the accuracy in terms of kcal/mol per bond. Transition metals
provide a more severe test, and typical errors of even the
best methods are often several kcal/mol per bond.

2.2. Kinetics

2.2.1. Arrhenius Parameters and Free Energy of
Activation

From a phenomenological point of view, numerous
experiments have shown that the variation of the rate constant
with temperature can be described by the Arrhenius equation5

whereA is the preexponential or frequency factor, which
may have a weak dependence on temperature, andEa is the
activation energy. A plot of lnk versus 1/T is called an
Arrhenius plot. If a reaction obeys the Arrhenius equation,
then the Arrhenius plot should be a straight line with the
slope and the intercept being-Ea/RandA, respectively. The
activation energy can be very roughly interpreted as the
minimum energy (kinetic plus potential, relative to the lowest
state of reactants) that reactants must have to form products
(the threshold for reaction), and the preexponential factor is
a measure of the rate (collision frequency) at which collisions
occur. A more precise interpretation ofEa was provided by
Tolman,6,7 who showed that the Arrhenius energy of activa-
tion is the average total energy (relative translational plus
internal) of all reacting pairs of reactants minus the average
total energy of all pairs of reactants, including nonreactive
pairs. The best way to interpretA is to use transition state
theory, which is explained below.

Although transition state theory will be presented in detail
in Sections 2.4 and 2.5, it is useful to anticipate here the
general form of the result. For bimolecular reactions, TST
yields an expression of the form
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k ) A exp(-Ea/RT) (2.2.1)

k(T) ) 1
âh

γ(T)Ko exp(-∆GT
‡,o/RT) (2.2.2)
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where ∆GT
‡,o is the quasithermodynamic free energy of

activation, andγ(T) is a transmission coefficient,Ko is the
reciprocal of the standard state concentration,h is Planck’s
constant, andâ is 1/kBT, wherekB is Boltzmann’s constant.
(Note that some formulations include a symmetry numberσ
that counts equivalent paths to the transition state; however,
we omit this and include symmetry numbers in∆GT

‡,o,
which is equivalent8,9 and allows symmetry effects to be
included by the same methods that are well established for
real equilibria.) It is common practice, especially for reaction
kinetics in the liquid phase, to write eq 2.2.2 as

where ∆Gact
o (T) is the phenomenological free energy of

activation. Clearly

2.2.2. Collision Theory
In this section, we briefly discuss collision theory. Col-

lision theory is necessary if one wants to discuss differential
cross sections or most state-selected phenomena,10 but the
present article is more focused on thermally averaged rate
constants. For rate constants, it has been emphasized that
collision theory and transition state theory make the same
predictions if the same criterion is used for reaction.11

However, the theories are also complementary in that one
or another may be more convenient for a specific application.
Furthermore, collision theory can be used to provide a
foundation for deriving transition state theory.12-14 We
consider collision theory first.

Simple collision theory provides useful insight into the
temperature dependence and magnitude of bimolecular rate
constants. There are several possible outcomes for a collision
of atom or molecule A in internal statei with molecule B in
internal statej:

(i) Elastic collision: Neither the arrangement (composition
and bonding pattern), nor the internal state of the molecules,
nor the relative translational energy changes; the only change
is in the direction of their relative motion.

(ii) Inelastic collision: The two molecules retain their
arrangement but change their internal states.

(iii) Reactive collision: The two molecules react to form
one or more new molecules, for example, C in internal state
m and D in the internal staten.

In case (iii), where a number of A(i) are incident in a beam
with relative velocityVR upon a scattering zone containing
B(j), we may define the state-selected rate constantkij and
reaction cross sectionσij such that

The average reaction cross sectionσr is obtained by averaging
over all the reactants internal states:

where wi
A and wj

B represent the Boltzmann weighting
factors of thei and j reactant internal states, respectively.
The thermal rate constant for the process is given by
averagingVRσr over an equilibrium Maxwell-Boltzmann

distribution ofVR; the result is12,15,16

where

is the relative translational energy, withµ being the reduced
mass of relative translational motion.

It is also possible to obtain state-selected thermal rate
constants by considering separately each of the internal states

Sometimes it is also useful to define the reaction prob-
ability PR as a function of the impact parameterb, which is
defined as the distance of closest approach between the two
molecules in the absence of interparticle forces. The prob-
ability of reaction decreases to zero for largeb. Actually,
we can consider a value ofb ) bmax after which the reaction
probability is negligible, and the reaction cross section is
given by

The simplest model is to consider the reactants as hard
spheres that do not interact with each other if the intermo-
lecular distance is larger than the arithmetic averaged of
their diameters, and soPR(b > d) ) 0, but that react at all
shorter distances soPR(b e d) ) 1. For this case the reaction
cross section isπd2, and by applying eq 2.2.7 one finds that
the reaction rate equals

The thermally averaged value of the relative speed is

so that eq 2.2.11 can be rewritten as

In other words,k is usually the thermal averageVRσr of
VRσr, but if σr is independent of relative speed, thenk
becomesVhRσr. Equation 2.2.11 does not account for the
observed experimental behavior described by the Arrhenius
equation, since it predicts a temperature dependence ofT1/2

for the rate constant.
An improvement of this model is the reactive hard spheres

model in which it is assumed that the reaction occurs if
µVLOC

2/2 exceeds a threshold energyE0, whereVLOC is the
relative velocity along the line of centers, i.e., in the direction
connecting the centers of the two spheres. This velocity
depends on the impact parameter so that the reaction is
assumed to occur if

Then the reaction cross section is

k(T) ) 1
âh

Ko exp(-∆Gact
o (T)/RT) (2.2.3)

∆Gact
o (T) ) ∆GT

‡,o - RT ln γ(T) (2.2.4)

kij(VR) ) VRσij(VR) (2.2.5)

σr ) ∑
i,j

wi
Awj

Bσij(VR) (2.2.6)

k ) â(8â
πµ)1/2∫0

∞
dErelErelσr(Erel) exp(-âErel) (2.2.7)

Erel ) µVR
2/2 (2.2.8)

kij ) â(8â
πµ)1/2∫0

∞
Erelσij(Erel) exp(-âErel)dErel (2.2.9)

σr ) 2π∫0

bmaxPR(b)bdb (2.2.10)

k(T) ) ( 8
πµâ)1/2

πd2 (2.2.11)

VhR ) ( 8
πµâ)1/2

(2.2.12)

k ) VhRπd2 (2.2.13)

Eo e Erel(1 - b2/d2) (2.2.14)
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and the rate constant is

which is similar to the Arrhenius expression and predicts a
variation with temperature ofT1/2 for the preexponential
factor. A problem with the reactive hard spheres model is
that it does not predict the preexponential factor is much
smaller than the gas-kinetic collision rate, although one finds
experimentally that this is often the case. To solve this
problem, a multiplicative empirical steric factorp was
introduced into the rate constant (2.2.16). The main problem
with these models is that they do not consider that a molecule
may react only when it is oriented in a particular manner,
nor do they account for the shapes and rotational-vibrational
motions of the reactants. These limitations are overcome by
transition state theory.

Analytical expressions have been given for the thermal
rate constants using other forms forσr.17,18

One case where reactions often occur without a barrier
(and hence where collision theory can be particularly useful)
is the collision of an ion with a neutral molecule. A useful
simple model for this case is the Langevin model,19-21 which
assumes that the ion is a point charge and the molecule is a
structureless sphere with polarizabilityR. It is assumed that
at long range only the ion-induced dipole attractive term
in the potential is important; the effective potential is then
given by

wherer is the distance between collision partners,q is the
charge of the ion, andL is the orbital angular momentum.
(In later sections, the classicalL2 is replaced by the quantal
l(l + 1), wherel is the orbital quantum number.) The first
term in eq 2.2.17 is the ion-induced dipole potential, and
the second term is the centrifugal potential. BecauseL )
µVRb and using (2.2.8), we obtain

The effective potential in eq 2.2.18 has a single maximum
at a radiusr* given by

and the effective potential at the maximum is

The critical impact parameterb* is obtained fromVeff,* and
is given by21

and the reaction cross section is

Thus,VRσr in eq 2.2.5 is independent ofVR. If Erel < Veff,*,
the centrifugal barrier cannot be penetrated (if tunneling is
neglected), and no reaction occurs. IfErel ) Veff,* the ion is
captured into a circular orbit of radiusr* around the molecule.
Finally, if Erel > Veff,* the ion can move inside the centrifugal
barrier, and the reaction probability is assumed to be equal
to unity.

The thermal rate constants obtained by the Langevin model
are independent of temperature and velocity and are given
by

For some reactions involving nonpolar molecules, the
Langevin model cross sections agree quite well with experi-
ment even at translational energies up to 5 eV,22,23 but in
general the model is only valid when the cross sections
exceed the hard-sphere cross sections. The hard-sphere
diameter for an ion can be estimated in various ways, for
example, by computing the potential energy curve or
potential energy surface for its interaction with a neon atom,
whose hard-sphere radius is known. At largeErel, b* be-
comes less than the sumd of the effective hard-sphere radii
of the collision partners so a better model is

An analogue of the Langevin ion-dipole model for neutral
reactions without a barrier (the most common examples of
these are many radical-radical reactions) is the Gorin model
which replaces-Rq2/2r4 in eq 2.2.17 by-(C6/r6)24-29 where
C6 is a constant. With the Gorin model, the thermal rate
constant is given by

This predicts a centrifugal barrier at much smallerR than
that of the Langevin model, and it is much less likely that
actual molecules can be treated as structureless and isotropic
at this distance than the ion-molecule partners can be treated
as structureless and isotropic at their centrifugal barrier.
Therefore, reactions between neutral molecules are less likely
than ionic reactions to be dominated by the long-range force
law. It has been suggested that a steric factor can be used to
correct for such deficiencies,30 but such corrections tend to
be purely empirical, providing little physical insight. More
sophisticated methods for treating both neutral and ionic
reactions without a barrier are considered in Section 2.5.

The Langevin model and later improvements are still
useful for current work and are widely used; however,
analytic collision theory has been largely overtaken by more
detailed and accurate TST calculations and by the use of
classical trajectory calculations. The latter allow the study
of the dynamics at the microscopic level (differential cross
sections, total cross sections, product energy distributions,
etc., ...), as well as at the macroscopic level (thermal rate
constants by numerical or Monte Carlo integration of eq
2.2.7), by solving the classical equations of motion. To run

σr ) πbmax
2 ) πd2(1 - Eo/Erel) (2.2.15)

k(T) ) πd2( 8
πµâ)1/2

exp(-âEo) (2.2.16)

Veff ) - 1
2

Rq2

r4
+ L2

2µr2
(2.2.17)

Veff(r) ) - 1
2

Rq2

r4
+ Erel(br )2 (2.2.18)

r* ) 1
b(Rq2

Erel
)1/2

(2.2.19)

Veff,* )
Erel

2b4

2Rq2
(2.2.20)

b* ) (2Rq2/Erel)
1/4 (2.2.21)

σ ) πb*
2 ) π(2Rq2

Erel
)1/2

(2.2.22)

kL ) 2π(Rq2

µ )1/2

(2.2.23)

σr ) max{π(2Rq2/Erel)
1/2

πd2
(2.2.24)

kGorin(T) ) xπ
µ

211/6Γ(23)(C6)
1/3(kBT)1/6 (2.2.25)
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the trajectories, a potential energy surface should be supplied
(its construction is discussed in the next section) together
with the initial conditions for the coordinates and momenta.
To sample as much as possible of the initial phase space
(coordinates and momenta) and to get meaningful results,
many trajectories (usually thousands or tens of thousands)
should be run. Often one restricts the initial vibrational
energies in the various vibrational modes to their allowed
quantized values, and when this is done the method is usually
called the quasiclassical trajectory (QCT) method.31 QCT
calculations can give accurate results when dynamical
quantum effects such as zero point energy, tunneling, and
resonances are not important. Methods32-35 for trajectory
calculations and a summary of classical models36 for reactive
collisions are available in reviews in other books.

For thermal rate constants of most chemical reactions,
trajectory calculations suffer from two major defects: (i)
failure to maintain zero point energy in modes transverse to
the reaction coordinate, and (ii) inability to include tunneling.
Defect (i) has been called “nonadiabatic leak,” and it tends
to make trajectory-calculated rate constants too large.31

Several methods have been proposed for alleviating this, but
none are satisfactory.37 There have also been attempts to add
tunneling to trajectory calculations, and a recent study
suggests that such methods deserve further investigation.38

Even more accurate information can be obtained by
performing quantum mechanical scattering calculations.39-53

For systems with only a few atoms, one can even calculate
converged reaction cross sections and rate constants for a
given potential energy surface. For example, very accurate
calculations are available for the D+ H2

50,51 and H+ H2
53

reactions. A recent review includes applications to bimo-
lecular reactions with up to six atoms.47 The early work on
applying scattering theory to chemical reaction rates involved
first calculating converged state-to-state cross sections49 and
then summing these over product states and averaging them
over thermal initial conditions. More recent work calculates
the converged thermal constant without generating or even
implicitly converging the state-to-state details. This kind of
treatment is based on time-dependent flux correlation func-
tions,54,55 which can be calculated by time-dependent56 or
time-independent57 quantum mechanics. We return to this
topic in Section 2.4.7.

2.3. Saddle Points and Potential Energy Surfaces
In many cases, it is possible to separate the motion of the

electrons from the motion of the nuclei, because the nuclei
move more slowly due to their higher mass. The condition
for the motion of both particles to be separable is that the
nuclear motion should proceed without change in the
quantum state of the electron cloud and, in this case, the
potential energy is only a function of the nuclear coordinates.
This approximation is known as the Born-Oppenheimer or
electronically adiabatic approximation, and it is equivalent
to assuming that the motion of the atoms does not cause
real or virtual transitions between different electronic states.
This condition is met if the electronic states are well
separated from each other. In this review, except in Section
3.2 and one paragraph of Section 4.1, we consider systems
in the ground electronic state for which the Born-Oppen-
heimer approximation is valid.

The study of the dynamics of a chemical reaction requires
knowledge of the potential energy surface (PES) for nuclear
motion. The PES is the potential energy as a function of the

nuclear coordinates of the system. According to the Born-
Oppenheimer approximation,58-62 it is equal to the adiabatic
electronic energy, including nuclear repulsion. The electroni-
cally adiabatic energyE of the system is given by

whereR is the set of 3N - 6 independent coordinates,TR is
the nuclear kinetic energy, andVNR(R) andEγ

(el)(R) are the
nuclear Coulombic repulsion energy and the electronic
energy, respectively. The subscript onEγ

(el) denotes the
electronic quantum number, and we consider this to be the
ground state (γ ) 1). Thus, the potential energy for the
motion of the nuclei is

In the case of a bimolecular reaction, the PES should cover
the range of geometries from separated reactants through the
strong interaction region and on to the separated products.
If the two fragments A and B are very far apart, there is no
interaction between them and the potential energy is the sum
of the potential energies of the fragments. When the
fragments approach, there is interaction between their
electronic clouds until a common electronic cloud is formed.
The forces due to the electron cloud change during this
process, and these forces are the gradient field of the PES.

SinceEγ
(el) is an eigenvalue of the electronic Hamiltonian,

the PES can be obtained by electronic structure calculations.
Some workers divide electronic structure methods into ab
initio and semiempirical. “Models which utilize only the
fundamental constants of physics are generally termed ab
initio; if some parameters are introduced which are deter-
mined by fitting to some experimental data, the methods are
semiempirical.”3 Although purists prefer ab initio methods,
it is usually necessary, except for very small systems, to use
semiempirical methods to obtain satisfactory results, either
semiempirical molecular orbital theory or high-level cor-
related methods with semiempirical parameters. Furthermore,
even when high-level ab initio methods are affordable, they
are usually less efficient than semiempirical methods.

Hartree-Fock (HF) theory63-65 and Møller-Plesset second-
order perturbation theory66,67 (MP2) are examples of low-
level ab initio methods; the former is inaccurate because of
the neglect of electronic correlation, but it can be improved
(and, as a bonus, made less expensive) if some matrix
elements are substituted by empirical parameters. Two of
the most successful of the semiempirical methods are the
AM168 and PM369 semiempirical molecular orbital methods,
implemented in the popular MOPAC program70 and many
other electronic structure packages. These methods, however,
are often not accurate enough for practical work.

Higher accuracy can be obtained by including electron
correlation and extending the basis sets used in the calcula-
tion. To use a method that accounts forall the electron
correlation, like full configuration interaction with a large
one-electron basis set, is feasible only for very small systems,
and the increase of either the level of correlation or the basis
set increases the cost of the calculation. Low-order treatments
of correlation energy, as in MP2, are quantitatively inaccurate
for kinetics, and higher-order correlated wave function
theory, such as coupled cluster theory71,72 with single and
double excitations and a quasiperturbative treatment of
selected connected triple excitations,73 called CCSD(T), is

E ) TR + VNR(R) + Eγ
(el)(R) (2.3.1)

V(R) ) VNR(R) + E1
(el)(R) (2.3.2)
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slowly convergent with respect to increasing the size of the
one-electron basis set. However, if one can afford CCSD-
(T) calculations with two or more basis sets one can often
extrapolate to the infinite-basis (IB) limit, also called the
complete-basis-set (CBS) limit, and this often yields results
good to 1 kcal/mol.74,75

Although CCSD(T) is generally very useful, it does not
describe bond breaking accurately if one considers bond
distances larger than those in typical atom-transfer transition
states. For such applications as well as some other “multi-
reference” situations, a “completely renormalized” (CR)
coupled cluster theory is more accurate.76-78

A variety of one-electron basis sets are available. A major
breakthrough in understanding basis-set convergence was
provided by analyzing atomic natural orbitals,79 and this led
to Dunning’s correlation-consistent polarized (cc-p) basis
sets,80 which are available in sequences of increasing quality,
e.g., valence double-ú (cc-pVDZ), valence triple-ú (cc-
pVTZ), valence quadruple-ú (cc-pVQZ), etc.81 When sys-
tematic sets of diffuse functions are included, a prefix aug-
is added (denoting “augmented”).82 Less systematic, but often
more economical, basis sets were developed by Pople and
co-workers. For example, 6-31+G(d,p)83 is an economical
alternative to aug-cc-pVDZ, and MG3S84 is an economical
alternative to aug-cc-pVTZ. For H though Si, MG3S is the
same as 6-311+G(3d2f,2df,2p),83 whereas for P through Cl
it differs from G3Large85 by the deletion of core polarization
functions on nonhydrogenic atoms and diffuse functions on
H. We note that the versatile 6-31+G(d,p) basis has also
been called DIDZ (“desert-island double-ú”) to denote its
general usefulness, and MG3S could similarly be called
DITZ.86 Some workers prefer other basis sets such as
6-311++G(d,p)83 which is correlation inconsistent but
nevertheless often gives reasonably well-converged geom-
etries or vibrational frequencies at lower expense than aug-
cc-pVTZ. Another useful “inconsistent” basis is 6-311+G-
(3df,2pd).4 The popular 6-31G(d) and 6-31+G(d,p) basis sets,
the balanced 6-31B(d) basis set,87 the economical MIDI!88

and MIDIY89 basis sets, split-valence polarized (SVP) basis,90

and the core-pruned general contractions91 may be useful for
calculations on large molecules.

Another useful strategy is to use semiempirical models
that employ correlated wave functions. Typically, these
methods involve carrying out the calculation at more than
one level (“level”) electron correlation method plus one-
electron basis set), and there are several successful multilevel
methods such as the scaling-all correlation (SAC) method,92-97

the complete basis set (CBS) methods,98-100 the multi-
coefficient correlation methods (MCCM),87,96,97,101-105 includ-
ing multi-coefficient Gaussian-3,97,103 scaled Gaussian-3
(G3S),106,107scaled and extended Gaussian-3 (G3SX),108 the
balanced multi-coefficient coupled cluster singles and doubles
method87 (BMC-CCSD), multi-coefficient Gaussian-2102

(MCG2), the original Gaussian-2 (G2)109 and Gaussian-3
(G3)85,107 methods, and the Weizmann-1 (W1) and Weiz-
mann-2 (W2) methods.110 These methods use different
schemes and different empirical data to extrapolate to full
electron correlation and an infinite basis set. Methods
employing lower (and hence more affordable) levels87,97,101,108

may be especially well suited to kinetics applications; these
are sometimes called reduced-order methods. A review is
available.111

As an example of high-level calculations applied to a
difficult case, Table 1 compares the transition state geom-

etries and classical barrier heights for the F+ H2 f HF +
H reaction as calculated by five high-level methods: scaling
external correlation112,113(SEC), multireference configuration
interaction with single and double substitutions114 (MR-
CISD), multi-coefficient Gaussian-3115 (MCG3), multiref-
erence coupled cluster116 (MRCC), fixed-node diffusion
quantum Monte Carlo117 (FN-DQMC), and r12-averaged
coupled-pair functional118 (r12-ACPF-2) calculations. The
values of the classical barrier height are tabulated in all cases
both with and without the relativistic spin-orbit contribution
of 0.39 kcal/mol. The table shows good convergence of the
most complete calculations114-118 and reasonable agreement
with the original calculations that predicted a bent transition
state,112,113 in contrast to the collinear transition state that
had been inferred from semiempirical valence bond calcula-
tions,119 unconverged ab initio calculations,120 and molecular
beam experiments.121

The electronic structure methods in the previous para-
graphs all involve wave function theory (WFT). A different
approach, less expensive in computer time, is based in the
Kohn-Sham implementation of density functional theory
(DFT),122,123 especially hybrid DFT124 and hybrid meta
DFT125 methods, which are versions of DFT with nonlocal
density functionals. These methods account for the electron
correlation energy and part of the electron exchange energy
through functionals of the density and density gradient
(DFT), through such functionals plus nonlocal exchange
operators (hybrid DFT), and through such functionals plus
nonlocal exchange operators and functionals of the kinetic
energy density (hybrid meta DFT).

Some of the most useful hybrid DFT functionals, based
on nonlocal exchange and on the density and magnitude of
the local gradient of the density, are the B3LYP,126

mPW1PW91,127 MPW1K,128 PBE1PBE,129,130and B97-2131

functionals. Successful hybrid meta DFT methods in-
clude B1B95,86,132 TPSSh,125 BB1K,132,133 MPW1B95,134

MPWB1K,134 BMK,135 PW6B95,136 PWB6K,136 and
M05-2X.137 DFT calculations employing the above func-
tionals with basis sets such as 6-31+G(d,p) and MG3 can
be very useful for calculating geometries of stationary points
(saddle points138 and equilibrium geometries of reactants and
products) at which more accurate energetic calculations (such
as extrapolated CCSD(T) or MCCM calculations) may be
carried out. Such DFT calculations can also be very useful
for calculating vibrational frequencies of large molecules and
saddle points. One advantage of DFT methods is that one
can obtain reliable results with smaller basis sets than are
required for reliable WFT calculations.

Another encouraging approach is the doubly hybrid DFT
method,139 which is a combination of SAC and hybrid or
hybrid meta DFT. A problem with DFT-type methods is that

Table 1. Electronic Structure Calculations of the Bond Lengths
(Å), Bond Angle (deg), and Barrier Height (kcal/mol) of the
Saddle Point of the F+ H2 f HF + F Reaction

V‡

method F-H H-H F-H-H nonrel rel

SEC 1.61-1.64 0.74-0.76 104-130 1.0-1.3 1.4-1.7
MR-CISD 1.55 0.77 119 1.5 1.9
MCG3a 1.51 0.775 128 2.8 3.2
MRCC 1.54 0.77 118 1.5 1.9
FN-DQMC 1.53 0.77 118 1.4 1.8
r12-ACPF-2 1.53 0.77 117 1.4 1.8

a Version 2s.
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they are not systematically improvable, although the predic-
tions of DFT can be systematically improved by combining
them with successively higher levels of MCCMs.140 Fur-
thermore, over time the density functionals have been
improved by better parametrizations.

Because the stationary points are often used to character-
ize the general features of a PES, algorithms for optimizing
stationary points are very important. These have recently
been reviewed.141 Methods for finding reaction paths are also
important, and the most commonly used methods require that
one first find a saddle point. More recently, nudged elastic
band methods have been developed that can compute a
reaction path without first finding a saddle point.142-146

Almost all density functionals involve some empirical
elements and should not be called ab initio; some workers
call them “first principles” methods, although the precise
boundary between first principles and other principles is not
clear.

In summary, a wide variety of quantum chemical methods
can allow us to obtain potential energy surfaces with high
accuracy, the limitation being the size of the system, although
the DFT-type methods can be applied to fairly big systems.

Trajectory simulations require knowledge of the PES over
broad ranges of configuration space. More limited PES
information is generally required for TST calculations, but
the amount of required information does increase with the
sophistication of the TST method. Various methods have
been developed to obtain an accurate representation of the
computed PES with the least computational effort. Reviews
of PESs for reactive systems are available,147,148but progress
since then is substantial.

In general, the first step is to locate all the stationary points
important for the reaction. A particular geometry is a
stationary point of the PES if the first derivatives of the
potential (gradient) with respect to all the nuclear coordinates
are zero

In other words, all the forces on the atoms in the molecule
are null. The nature of stationary points is determined by
the eigenvalues of the Hessian matrix, which is the matrix
of second derivatives with respect to nuclear coordinates.
The stationary points are classified as minima, saddle points,
and hilltops.

A geometry is a minimum (also called an equilibrium
structure) when 3N - 6 eigenvalues of the Hessian matrix
are positive for a system withN atoms. The number of
Cartesian coordinates is 3N; we exclude the six eigenvalues
that correspond to overall translation and rotation. For linear
structures, there are only two rotational degrees of freedom
so 3N - 6 and 3N - 7 become 3N - 5 and 3N - 6,
respectively. The PES will usually (the major exception being
radical-radical reactions) have van der Waals minima
formed by intermolecular attraction before and/or after the
collision, and in addition it sometimes has deeper minima
due to chemical bonding; these are called wells. For nearly
thermoneutral reactions, one expects van der Waals minima
for both reactants and products, but for very exothermic
reactions the reactants may come together without a transition
state and without a reactant van der Waals complex.

When one says saddle point with no modifier, one usually
means first-order saddle point. Annth-order saddle point in
the PES is a geometry withn negative eigenvalues of the

Hessian (again after excluding the six zero translations and
rotations). Saddle points withn > 1 are also called hilltops.
The most important saddle points are the first-order saddle
points, for which only one eigenvalue is negative. The
eigenvectors of the Hessian matrix at a stationary point are
called normal coordinates.149,150A first-order saddle-point is
a minimum of the PES with respect to 3N - 7 normal
vibrational coordinates, but a maximum with respect to the
other one.

For a simple barrier reaction, there is only one first-order
saddle-point which is a maximum with respect to this
“reaction coordinate” of the process. This saddle point is
commonly called a transition state, and the potential energy
at this geometry minus the potential energy of the equilibrium
reactants is the classical barrier height of the reaction, which,
as discussed above, is a zero-order approximation to the
activation energy in the Arrhenius equation. Therefore, a
good PES should have chemical accuracy at least at the
stationary points.

The simplest bimolecular reactions are atom-diatom
reactions. The first quantum mechanical model for a reactive
PES was derived for this kind of system by London,151 based
on the valence bond method for the H+ H2 exchange
reaction,152 and this became the basis of the London-Eyring-
Polanyi (LEP),153 London-Eyring-Polanyi-Sato (LEPS),154,155

and extended-LEPS156,157 potential energy surface fitting
functions. The extended-LEPS model has three adjustable
parameters (called the Sato parameters) that allow one to fit
the location of the potential energy barrier and its height.
This kind of PES, although historically very important,
cannot represent most atom-diatom reactions accurately due
to its lack of flexibility,158 but it is still frequently useful for
providing insight into reaction mechanisms. Examples are
provided by recent studies of product energy release in the
H + HBr f H2 + Br reaction159 and vibrationally inelastic
and reactive probabilities for the N and N2 degenerate
rearrangement (exchange reaction).160,161

In current practice, due to the high accuracy that can be
obtained from electronic structure calculations, the strategies
used to construct polyatomic PESs are usually based on
electronic structure calculations. The most straightforward
procedure is called direct dynamics.162-167 Direct dynamics
is defined as “the calculation of rates or other dynamical
observables directly from electronic structure information,
without the intermediacy of fitting the electronic energies
in the form of a potential energy function.”164 This is some-
times dubbed “on the fly” dynamics because every time the
dynamics algorithm requires an energy, gradient, or Hessian,
it is calculated “on the fly” by electronic structure methods.
A difficulty, though, is that chemical accuracy requires high
levels of electronic structure theory, and even for very small
systems high levels of electronic structure theory are
expensive in terms of computer time. The cost is higher for
trajectory calculations than for variational transition state
theory, and for this reason early direct dynamics trajectory
calculations were based on neglect-of-differential-overlap
approximations168 or the Hartree-Fock approximation169,170

and were limited to ensembles of short-time trajectories.
A recent example of a medium-level ab initio direct

dynamics calculation on a bimolecular reaction is provided
by a recent calculation on the gas-phase Cl- + CH3Cl SN2
reaction.171 Although the level of theory chosen, MP2/
6-31G(d), does not usually provide chemical accuracy for
either barrier heights or anion thermochemistry (it does better

∂V(R)
∂R

) 0 (2.3.3)
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for a degenerate rearrangement like Cl- + CH3Cl), the
trajectories required 92 h of computer time even with a step
size large enough to allow energy nonconservation up to 0.6
kcal/mol. Such high costs are often reflected in sparse
sampling to keep the total effort affordable. In the case at
hand, only three bimolecular collisions were calculated. Also
at the QCT/MP2 level, Liu et al.172 studied the zero-point
energy effect on quasiclassical trajectories for the bimolecular
reaction of formaldehyde cation with D2. Another possibility
is to use density functional theory which, in general, can be
quite accurate, or higher-level correlation methods. For
instance, Camden et al.173-175 carried out B3LYP/6-31G(d,p)
calculations for a QCT direct dynamics study of H+ CD4.
Yu et al.176 studied the OH+ HOCO reaction by using the
SAC-MP292 method, which generally provides more accurate
energies than the MP2 method. The scaling factor of SAC
was obtained by minimizing the differences between this
method and a coupled-cluster method.

For the purpose of evaluating cost/accuracy quotients of
various electronic structure levels that might in principle be
used for direct dynamics calculations, Zhao and one of the
authors177 applied several levels of electronic structure theory
to five relevant databases, and the results are summarized
in Table 2. The table shows mean unsigned errors (i.e., mean

absolute deviations from best estimates) for five databases:
AE6 for atomization energies of neutral main-group mol-
ecules,178 EA13 for electron affinities of atoms and small
molecules,84 BH6 for barrier heights of bimolecular hydrogen-
atom transfer reactions,178 HAT12 for barrier heights of
bimolecular neutral heavy-atom transfer reactions,179 and
NS16 for barrier heights of bimolecular anionic nucleophilic
substitution reactions.179 Table 3 shows mean signed errors
for the same five databases. Table 2 also includes relative
costs (in computer processor time) for evaluating the energy
of a typical transition state configuration by each of the
methods. Tables 2 and 3 show that MP2 calculations,
although widely employed for direct dynamics, are not
reliable for kinetics because they systematically overestimate
barrier heights. SAC methods give improved accuracy but
are still not as accurate as the best DFT method, MO5-2X.
The older, but more popular B3LYP density functional is

also less accurate than MO5-2X, and it systematically
underestimates barrier heights. Boese et al. have com-
mented,180 “Very often, because of sheer user inertia, first-
generation functionals are applied rather than the more
accurate second-generation functionals.”

When high-level direct dynamics is not feasible, high-level
electronic structure calculations can still be used in various
other ways. For example, they can be used (i) as data for
“fitting” or “interpolation” to a given analytical function or
(ii) as data for parametrizing lower level electronic structure
methods, which can then be used to perform the direct
dynamics calculations. We will return to case (ii) in the final
two paragraphs of this section; next, though, we consider
several approaches for case (i).

In case (i), we say that the analytical function “fits” the
ab initio data when the potential obtained by the function
does not necessarily match the ab initio data and that it
“interpolates” when it does match at the data points.181

A fitting (or interpolation) method is called global when
the resulting PES is fit for all accessible ranges of the
interesting coordinates. One can also construct semiglobal
and local fits. The terms “global” and “local” will be used
in the following paragraphs though to distinguish different
ways to interpolate. A global interpolant is a single function
that covers all the regions of the potential that are relevant
to the dynamics and that is determined using all the data. In
contrast, an interpolation method is called local when the
potential at a given point is determined only by the ab initio
points that are in its vicinity. Especially for interpolation,
the distinction between these kinds of fits and interpolations
is not, however, as clear-cut as it might first seem because
in all methods the interpolation or fit is a stronger function
of nearby data than far away data, and as the dependence
on distance away becomes steeper, a method becomes more
local. In recent years, the increasing accuracy of WFT
calculations for small systems has been responsible for the
appearance of many interpolation algorithms.182-257

In general, when a number of scattered ab initio points
are fitted to an analytical function, the method is global. On
the other hand, methods that interpolate between elec-
tronic structure points may be global (polynomials,242,252

splines,182,183,187,237,258,259 reproducing kernel Hilbert
space,192,217,226or Shepard interpolation260) or local.

The first type of PESs used for reaction dynamics were
analytical global functions (for instance, the extended LEPS
function mentioned above), often with parameters that were

Table 2. Mean Unsigned Errors (kcal/mol) and Costs (relative
units) of Several Electronic Structure Levels

level AE6a EA13 BH6 HAT12 NS16 costb

MP2/6-31G(d) 8.0 27.5 6.8 12.4 8.0 1.0
MP2/6-31+G(d) 8.2 10.2 6.6 12.5 2.3 1.4
MP2/6-31+G(d,p) 5.1 10.0 5.5 12.6 2.2 1.9
MP2/6-31+G(d,2p) 4.3 9.6 4.0 12.0 2.2 2.8
MP2/6-31++G(d,p) 5.3 10.0 5.4 11.2 2.2 2.3
MP2/6-311++G(d,p) 5.0 10.2 4.6 12.6 3.3 3.4
MP2/6-311++G(2df,2pd) 1.5 4.8 3.3 11.1 0.6 33.8
SAC-MP2/6-31G(d) 4.1 24.3 5.2 13.3 8.9 1.5
SAC-MP2/6-31+G(d,p) 2.1 7.8 4.2 12.1 2.9 2.8
SAC-MP2/6-31+G(d,2p) 1.6 7.8 2.7 11.5 2.8 3.9
B3LYP/6-31+G(d,p) 1.5 3.2 5.0 8.8 3.6 3.2
B3LYP/MG3S 0.7 2.3 4.7 8.5 3.3 11.0
M05-2X/6-31+G(d,p) 1.4 3.0 1.6 2.5 1.7 4.3
M05-2X/MG3S 0.7 2.0 1.4 2.0 1.5 15.6

a The mean unsigned error for atomization energies is on a per bond
basis.b The cost for each method is the computer time for a single-
point gradient calculation at a generalized transition state of the OH-

+ CH3F SN2 reaction divided by the computer time for the same
calculation at the MP2/6-31G(d) level with the same computer program
and same computer, averaged over two computers (IBM Power4 and
SGI Itanium 2).

Table 3. Mean Signed Errors (kcal/mol) of Several Electronic
Structure Levels

level AE6a EA13 BH6 HAT12 NS16

MP2/6-31G(d) -8.0 27.5 6.8 12.0 -2.2
MP2/6-31+G(d) -8.2 10.2 6.6 12.1 1.1
MP2/6-31+G(d,p) -5.1 9.9 5.5 12.6 1.1
MP2/6-31+G(d,2p) -4.3 9.5 4.0 12.0 1.0
MP2/6-31++G(d,p) -5.3 9.9 5.4 11.2 1.1
MP2/6-311++G(d,p) -5.0 10.2 4.6 12.6 3.3
MP2/6-311++G(2df,2pd) -0.7 4.7 3.3 11.1 0.6
SAC-MP2/6-31G(d) -1.0 24.3 5.2 11.5 -3.6
SAC-MP2/6-31+G(d,p) -0.5 7.2 4.2 12.1 0.3
SAC-MP2/6-31+G(d,2p) -0.3 7.2 2.7 11.5 0.3
B3LYP/6-31+G(d,p) -1.5 -2.5 -5.0 -8.8 -3.6
B3LYP/MG3S -0.6 -1.5 -4.7 -8.5 -3.3
M05-2X/6-31+G(d,p) -1.4 -0.1 -0.6 1.1 -0.6
M05-2X/MG3S 0.0 0.5 -0.4 1.2 -0.8

a The mean unsigned error for atomization energies is on a per bond
basis.
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fit to available spectroscopic or thermochemical data (such
as bond energies), dynamics data (such as barrier heights
inferred from rate constants), electronic structure data, or
some combination. Sometimes the early PESs had qualitative
flaws.157 For example, LEPS functions do not include
dispersion interactions, and often the van der Waals well is
missing or is qualitatively inaccurate. It has been pointed
out that a reactive surface should have a qualitatively correct
well in about the right place so that the repulsive interaction
energy decreases to about the right value at about the right
place.261 The width of the energy barrier depends on the
location of van der Waals well, and thus the correct calcu-
lation of the tunneling probabilities, especially at low energy,
is sensitive to the quality of modeling this feature.262,263

Over the years, several new methods have been developed
for the global representation of a PES, especially for atom-
diatom reactions. For some simple reactions, like the H+
H2 bimolecular reaction, there are several PESs, which have
been recently reviewed by Aoiz et al.264 The most accurate
H + H2 potential energy surface has been used for converged
quantum mechanical dynamics calculations of the rate
constant.53 Below, we briefly describe some of the general
techniques to build global PES from scattered electronic
structure calculations.

The diatomics-in-molecules (DIM) method,265-267 a form
of semiempirical valence bond theory, allows one to build a
Hamiltonian for a polyatomic system based on information
about the diatomic fragments. It relates the Hamiltonian
matrix elements of the polyatomic system to those of its
diatomic subsystems, for which matrix elements depend on
a single interatomic distance. The DIM representation has
been used, for instance, to study the O(1D) + H2 f OH +
H bimolecular reaction.268,269The DIM method reduces to a
LEPS-type potential for three-body systems with one active
s electron on each center.152,270

In the many-body expansion (MBE)184 method, the
potential for a polyatomic system ofN atoms is given by a
sum of terms corresponding to atoms, its diatomic sub-
systems, triatomic subsystems, tetra-atomic subsystems, etc.
For instance, for a tetratomic system ABCD, there are four
monatomic terms,VA

(1), VB
(1), VC

(1), and VD
(1), six diatomic

terms of the type AB, AC, AD, BC, BD, and CD, four
triatomic terms of the type ABC, ABD, ACD, and BCD and
one four-body term. The monatomic terms are simply the
energies of the separated atoms, the two-body terms are
potentials for diatomics, and the higher order terms include
interaction potentials among three and four atoms, respec-
tively. Varandas et al.271 used MBE potentials together with
the DIM approach to fit the ground and first excited state of
the water molecule. Their PES also includes a function that
allows switching between the two electronic states. Liu et
al.272 have used the MBE method to study the recombination
reaction between hydroxyl radicals and nitrogen dioxide to
form nitric acid. The MBE method has the advantage that
the terms can be used for any system containing the same
fragments. For instance, if an MBE potential for water is
available, it provides several of the terms in a potential for
the reaction HO+ H2 f H2O + H, including all the one-
body and two-body terms and one of the three-body terms.
Mielke, Garrett, and Peterson273 showed for the H+ H2

reaction that the many-body decomposition is also useful
for extrapolation of ab initio data. Lakin et al.225 and Troya
et al.235 applied the MBE method to the OH+ CO and F+
CH4 reactions, respectively.

Varandas and co-workers have pioneered a version of the
MBE method, called the double many-body expansion
(DMBE) method,274-278 in which the interaction energy is
divided into two independent expressions that are called
Hartree-Fock and dynamical correlation terms, respectively.
This method has the advantage that the functional forms of
the two contributions can be different and that each term
can be fitted independently to different ab initio levels. A
summary of the application of DMBE to four-atom bimo-
lecular reactions has been given by Varandas.277 Paniagua
and co-workers developed a similar method, but in this case
the polynomial expressions for the two-body and three-body
terms279,280 can be extended in a systematic way to larger
systems.281 Recently, Hayes et al.282 have used this method
to fit 3230 ab initio geometries to study the F+ HCl f HF
+ Cl reaction.

Some global fitting methods, mainly for atom-diatom
reactions, are based on Morse-type potentials. Wall and
Porter283 used a rotating Morse (RM) function to construct
the potential energy surface for collinear atom-diatom A
+ BC f AB + C reactions, and this was used for the first
semiquantitative fit to the PES of the collinear H+ H2

reaction.284 Bowman and Kuppermann285 improved the RM
model by performing a cubic spline interpolation of the
Morse parameters along the rotating angle. This approach
is called rotated Morse-splines (RMS) method. Wright and
Gray286 extended its applicability by including not only the
swing angle but also the bond angle to take into account
bent geometries. This functional form has been used to model
the PES of some atom-diatom systems.287-291Garrett et al.292

combined the RM method with the bond-energy-bond-order
(BEBO)293 method for the Cl+ H2 system. Related to the
RMS approach are the rotated bond order (ROBO)188 and
the largest-angle generalization of rotating bond order
(LAGROBO)198,201methods. The bond-order (BO) for two
atomsnij is given by294

where Rij and Rij
0 are the internuclear distance and the

equilibrium internuclear distance, respectively, andâij is a
parameter related to the harmonic frequency, reduced
mass, and dissociation energy of the diatom. In the ROBO
method, as in the RMS method, the potential is written as a
sum of a radial function multiplied by an angular function
plus an interaction term. The LAGROBO functional is a
weighted sum of the ROBO functions for the different
rearrangement channels of the system (3 for a triatomic
system and 12 for a four-atom system). This method was
recently applied to the OH+ HCl reaction.230 For systems
with more than four atoms, Garcı´a et al.251 developed an
approximate method based partly on the LAGROBO method
and partly on the MBE method, which they applied to build
the PES for the hydrogen abstraction reaction from methane
by chlorine. Duin et al.295 proposed an extension of molecular
mechanics to reactive systems by using bond orders.

Related to the above methods is the reduced dimension-
ality (RD) approach developed by Clary and co-work-
ers213,231,234,245,257to study hydrogen abstraction reactions.
These reactions are all of the type D-H + A f D + H-A
(D and A are the donor and acceptor atoms, respectively,
and H is hydrogen) and the RD potential is constructed from
a sum of two 2D-Morse functions, which are given in

nij ) exp[-âij(Rij - Rij
0)] (2.3.4)
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hyperspherical coordinates. The objective is to obtain a PES
for evaluating the thermal rate constants by conventional
transition state theory but calculating the cumulative reaction
probability of this two-dimensional (2D) reduced Hamilto-
nian by a quantum mechanical method.

Other techniques make use of high-order polynomials to
fit the global PES. Millam et al.206 developed a fitting method
based on a fifth-order polynomial function. It has the
advantage that can be used to run trajectories with larger
step sizes. Medvedev, Harding, and Gray256 calculated
∼79 000 ab initio points to construct a global analytic
function based on a sixth-order polynomial plus three
additional polynomial functions to reproduce the CH3

minimum and the asymptotes of the H2 + CH(2Π) f H +
CH2(X̃3B1) bimolecular reaction. Bowman and co-work-
ers238,242,247,252used an approach in which the ab initio data
are globally fitted to a permutational symmetry invariant
polynomial. The potential is given by

where p(x) and qi,j(x) are polynomials, andyi,j ) [Ri,j]-1

exp(-Ri,j). The polynomials are built in a way that ensures
invariance under permutation of like nuclei. The method has
been tested in the construction of the potential energy
surfaces for O(3P) + C3H3 and H + CH4 reactions,247,252

respectively. For the latter, the authors calculated a large
number of ab initio points, which they fitted to the above
expression to study the abstraction and exchange reactions
by running quasiclassical trajectories.

Rogers at al.296 compared a potential made by combining
the extended LEPS function with two high-order polynomials
to an RMS potential for the O(3P) + H2 reaction. They
obtained excellent accuracy (about 0.3 kcal/mol) between
the PESs by adding virtual points and localized Gaussians,
which eliminated some unphysical features of the original
potentials.

All the global fitting methods described above, with the
exception of the MS methods, require the optimization of
adjustable parameters. Those parameters are usually obtained
by performing a least squares (LS)184-186 fitting of electronic
structure data, which is not always easy. In contrast, spline
functions182,183,258,259,297interpolate the data instead of fitting
them. A difficulty is that splines need a fair amount of data
over a regular grid, and their application has been limited to
two or three dimensions. Recently, Rheinecker, Xie, and
Bowman237 carried out dynamics calculations of the H3O+

+ H2O proton-transfer reaction in reduced dimensionality.
Those authors considered three coordinates, i.e., those of the
donor, the acceptor, and the transferred particle, which were
fitted to a three-dimensional (3D) spline.

The reproducing kernel Hilbert space (RKHS)192 method,
like spline interpolation, is an interpolation method, but
with the advantage that some constraints, like smoothness
and good asymptotic behavior, are explicitly taken into
account. On the other hand, the number of ab initio points
needed to do the interpolation grows exponentially with the
dimensions of the system and the method works best if the
data are provided over a rectangular grid. This approach is
usually combined with the MBE method and each of the
many-body expansion terms are given by RKHS interpola-
tion, i.e., theN-body term of the expansion for a regular
grid is given by

where x ) (x1, x2,..., xN) is the set ofN independent
coordinates,M1, M2, ..., MN are the numbers of ab initio
points along each coordinate,qj(xj

ij,xj) is a one-dimensional
(1D) reproducing kernel for each variablexj

ij, andRi1,i2,...,iN
are coefficients that can be obtained by solving a set of linear
equations.215 The RKHS method has been applied to several
triatomic systems as for instance the N(2D) + H2, C(1D) +
H2 and O(3P) + HCl bimolecular reactions.219,221,227Bala-
banov et al.249 also applied this interpolation method to
several reactive channels of the ground-state of the HgBr2

system, i.e., abstraction of a bromine atom (HgBr+ Br f
Hg + Br2), exchange [HgBr(1)+ Br(2) f HgBr(2) +
Br(1)], and insertion (HgBr+ Br f HgBr2) reactions,
respectively. Recently, Ho and Rabitz226 introduced a new
formulation of the RKHS method called reproducing kernel
Hilbert space high dimensional model representation (RKHS-
HDMR), which allows one to reduce multidimensional
integrations to independent lower dimensional problems. So
far it has been tested for the C(1D) + H2 reaction,226 although
in principle it is easier to extend to higher dimensional
systems than the original RKHS method.

Analytic potentials for reactive degrees of freedom can
be combined with nonreactive force fields (molecular
mechanics) to treat more complex reactions210,214,241,244,297-300

(as discussed further below).
Next we turn our attention to local methods based on

interpolation and specifically those based on Shepard
interpolation,259,260 which was pioneered by Ischtwan
and Collins.189,218 In their work, electronic structure meth-
ods are used to calculate Hessians at many points,
typically selected on the basis of trajectory calcu-
lations,190,194-197,199,200,204,207,209,212,218,222,232,246,248,250and the
PES is represented by a weighted average of the Taylor series
Ti about each electronic structure point where a Hessian is
calculated:

Ti is a Taylor series expansion around pointRi truncated to
second order, andN is the number of points where a Taylor
series is available. The normalized weighting factorWi

weights the contribution of the Taylor expansion aboutRi

and is given by

Data points that have a geometry close toR have a larger
weight than those with very different geometries. This is
achieved by the weighting function

where p is a parameter that determines how quickly the
weighting function drops off, andZ is a suitable function of

V(N)(x1,x2,...xN) ) ∑
i1

M1

∑
i2

M2

...∑
iN

MN

Ri1
,i2,...iN∏

j)1

N

qi(xj
ij,xj) (2.3.6)

V ) ∑
i)1

N

Wi(R)Ti(R) (2.3.7)

Wi(R) )
Vi(R)

∑
j)1

N

Vj(R)

(2.3.8)

Vi ) 1

|Z(R) - Z(Ri)|2p
(2.3.9)

V ) p(x) + ∑
i<j

qi,j(x)yi,j (2.3.5)
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R. In particular, the PES is built in coordinates that are
reciprocals of the internal coordinates. The normalized
weighting factor should provide a smooth interpolation
between nearby points even when they are far away from
the geometry of interest. Alternative weighting functions can
also be considered.191,211The Shepard interpolation method
for generating PESs for trajectory calculations is featured in
a recent review.220

One of the advantages of this method and of Shepard
interpolation in general is that regions that are irrelevant to
the dynamics may be ignored and new electronic structure
points may be readily incorporated to improve the PES. Yagi
et al.216 and Oyanagy et al.254 have used Shepard interpolation
based on fourth-order Taylor expansion to obtain highly
accurate PESs. Very recently,246 the Shepard method has been
extended to study diabatic potential energy surfaces, which
are discussed later in this section and also in Section 3.2.
Thompson and Collins195 also developed techniques called
“rms sampling” and “h-weight” to successively improve and
“grow” the PES.

The Shepard interpolation method needs not only the
energy but also the gradient and the Hessian at every data
point. One way to overcome some of the high computational
requirements of the method is to combine Shepard interpola-
tion with an interpolating moving least-squares method to
evaluate the gradients and Hessians. The combined IMLS/
Shepard procedure has been applied to some atom-diatom
reactions such as the LiH+ H and O(1D) + H2 reac-
tions.215,224Other authors228,229,236,239,240,253have simply used
the IMLS method to interpolate PESs, because Shepard
interpolation can be considered a zero-degree IMLS and a
first-degree IMLS solves the “flat-spot” problem.

Another method that makes use of Shepard interpola-
tion is multiconfiguration molecular mechanics method
(MCMM).210,214,241This method is based on semiempirical
valence bond theory,151-158,181,265-270,274,297-307 and the PES
is built starting with a molecular mechanics potentialV11

valid in the reactant-valley well and a molecular mechanics
potentialV22 valid in the product-valley well. The Born-
Oppenheimer potential energy is represented at any geometry
R as the lowest eigenvalue of the 2× 2 electronically
diabatic matrixV

In this context, a diabatic potential is one that corresponds
to a particular bonding arrangement or valence bond
structure.

The lowest eigenvalue of eq 2.3.10 is

where V12(R) is called the resonance energy function or
resonance integral. An estimate ofV12(R) is obtained from
the scheme proposed by Chang and Miller.306,307 In their
approach, the resonance integral is expressed as

In the MCMM method, this equation is used for each of
the n ab initio points, for which we know the energy,

gradients, and Hessians, and for a given pointi the poten-
tials are expanded in Taylor’s seriesV(R;i), V11(R;i), and
V22(R;i), to second order about theR(i) geometry. Each
Hessian generates a Taylor’s series ofV12(R) about another
point. These series are joined by Shepard interpolation, and
the new resonance integralV12

S (R), is given by

where wi(R) is a weighting function, andV′12(R,i) is a
modified quadratic form obtained from the Taylor series
expansion about the pointi. The weighting function is taken
to be as smooth as possible consistent with conditions
required for eq 2.3.13 to be a true interpolant of energies,
gradients, and Hessians. The weighting function is usually
a function of the bond-forming and bond-breaking distances.
The MCMM method uses redundant internal coordinates
because they have the advantage of being rotationally
invariant. As is Collins’s method, the MCMM method is
systematically improvable, and we can sample only the parts
of the PES relevant to the dynamics.

A key advantage of the MCMM method is that it makes
use of molecular mechanics and therefore can deal with quite
large systems. The use of molecular mechanics in a valence
bond context for representing potential energy surfaces was
suggested in various ways in pioneering studies by Coulson
and Danielsson,301 Raff,297 Warshel and Weiss,298,299,308,309

and others300,303,310-315and it is useful to add some perspective
on these approaches. First of all, as emphasized recently by
Shurki and Crown,314 incorporating valence-bond configu-
ration-mixing elements in a model allows one to work
explicitly with “the pictorial resonance structures we usually
think of as chemists” and thereby “enables us to understand
in detail the mechanism of barrier formation by following
the energies of the VB structures and the resulting mixing
of states along the reaction coordinates.” Thus, valence bond
theory is a powerful tool for obtaining insight. Furthermore,
it provides very useful nonpairwise-additive functional forms
for fitting PESs since it naturally builds in the saddle point
structure of chemical reactions. Indeed, as mentioned above,
there is a long history of this kind of usage of valence bond
theory,151-158,181,265-270,274,302-304 especially for small systems.

Espinosa-Garcia and co-workers316-320 have used LEPS-
type potential energy surfaces augmented by molecular
mechanics terms to study polyatomic systems, mainly
abstraction reactions of the type CH4 + X f CH3 + HX
and CX3Y + H f products, where X, Y) F, Cl, Br, or I.
These surfaces are formulated as a sum of three terms:

where Vstr is a LEPS-type semiempirical valence bond
potential,Vval is the potential for harmonic valence bending,
andVop is the out-of-plane bending term.

A natural way to extend such treatments to larger systems
is to write297,300

whereVVB
A is a valence bond potential energy function for

the reactive part of the subsystem where bond rearrangement
occurs (subsystem A, as indicated in the superscript),VN is
a nonreactive (N) potential function of the type321 widely

V ) (V11(R) V12(R)
V12(R) V22(R) ) (2.3.10)

V(R) ) 1
2
{(V11(R) + V22(R)) - [(V11(R) - V22(R))2 +

4V12(R)2]1/2} (2.3.11)

V12(R)2 ) [V11(R) - V(R)][V22(R) - V(R)] (2.3.12)

V12
S (R) ) ∑

i)1

n

wi(R)V′12(R;i) (2.3.13)

V ) Vstr + Vval + Vop (2.3.14)

V ) VVB
A + VN

B (2.3.15)
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used to treat molecular vibrations and vibrational spectros-
copy, and the nonreactive subsystem is labeled B. If we use
a two-state valence model, eq 2.3.10 can be written as

or

where mineivV denotes the minimum eigenvalue of matrix
V. The subscripts refer to reactant (R) and product (P).
Nonreactive potential functions are usually written as a sum
of (often harmonic) potentials for individual stretches, bends,
torsions, and other nonbonded interactions, and such potential
functions were originally obtained from vibrational spec-
troscopy.321 They were also used to rationalize the rate of
bimolecular reactions.322,323 More recently, such potential
energy functions have been widely parametrized in a way
designed to be transferable for the prediction of structure
and conformational energy, with less emphasis on vibrational
spectra;324-330 such potential functions are usually called
molecular mechanics (MM). Since an MM potential function
corresponds to a definite bonding arrangement, it can be
associated with a single valence bond configuration.

Warshel and Weiss298,299,308,309proposed a method that is
equivalent to replacing the diagonal elements in eq 2.3.17
by molecular mechanics potentials (VAB) for the reactants
(subscript R) and products (subscript P) of the combined AB
system:

The idea that potential energy functions for large systems
can be approximated by mixing molecular mechanics
potential functions is a powerful one. Warshel and Weiss
call this the empirical valence bond method (EVB). Although
this name has now become well established, it continues to
cause confusion of the same type that would be engendered
if a specific kind of semiempirical molecular orbital theory
were designated empirical molecular orbital (EMO) theory.
To avoid confusion of the generic and the specific, we use
the phrase “semiempirical valence bond”157 to refer to the
generic class of empirical or semiempirical (these words
mean essentially the same thing) valence bond theories.

Warshel and co-workers usually parametrizeVRP
A as a

constant or a two-parameter function depending on one of
the coordinates of subsystem A. This is not guaranteed to
give the correct global behavior ofV, but it is serviceable,
especially since “the main point of the EVB method is not
in its gas-phase surface but rather in its treatment of the
solvent.”308 Other workers, however, have employed the
formalism with more elaborate fitting methods.315 Chang and
Miller 306 attempted to make the EVB form more systematic
by replacingVRP

A by VRP
AB and making a multidimensional

Gaussian approximation toVRP, and they claimed that their
resulting expression for the potential energy reduces properly
to the appropriate limits for reactants and products, but it
does not because approximately half the coefficients of the

quadratic terms in the multidimensional Gaussian are posi-
tive, whereas they assumed that they are all negative.

The MCMM method presented above also has the form
of eq 2.3.18, and it provides a systematic way to parametrize
the EVB method. The use of MM in this method helps in
two ways. First of all, it makes it possible to interpolateV12,
rather thanV; V12 is much smoother. Second, the molecular
mechanics terms describe the variation of the potential as a
function of the spectator degrees of freedom quite well, and
so one does not need to add Hessian points with various
values of the spectator coordinates to incorporate that
variation. It is possible to save further computational expense
by using electronic structure theory to calculate partial
Hessians involving only the most critical degrees of free-
dom.241 Recently, the MCMM method has also been applied
to the barrierless BH5 dissociation reaction233 and to proton-
transfer reaction in the water trimer.255

The MCMM method, although based completely on ab
initio electronic structure calculations, is not a straight direct-
dynamics method because an algorithm for interpolation is
needed to calculate geometries that are not available in the
initial set of input data. An alternative approach that avoids
interpolation is the hybrid VB/MM method of Shurki and
Crown.314 This method combines molecular mechanics for
the diagonal elements with a “standard” ab initio valence
bond package for the off-diagonal elements, thereby avoiding
parametrization as well as interpolation. An empirical
combined valence bond molecular mechanics (CVBMM)
method has also been proposed.300 In this method, the VB
part is an extension of the semiempirical VB methods that
were originally developed for small systems.

As discussed above, another alternative is to avoid both
MM and interpolation and to use straight direct dynamics
to build the PES, that is, to calculate “on the fly” every
energy, gradient, or Hessian needed for the dynamics
calculation. Unfortunately, this cannot be done economically
if the level of ab initio theory employed includes much of
the electronic correlation and involves large basis sets. One
possibility is to use a neural network for function approxima-
tion; this combines243 electronic structure calculations with
sampling methods that make use of molecular dynamics
calculations to sample important parts of the PES in a similar
way to how they are used by Collins and co-workers218 for
Shepard interpolations.

Another possibility is to do high level ab initio calculations
at the stationary points (reactants, products, and transition
state) and try to find a lower-level method that provides
similar energies and geometries. Sometimes it is possible to
find a low-level ab initio method that fulfills the requirement;
however, if the system is relatively big even a low-level ab
initio method can be impractical. A common approach is to
use semiempirical molecular orbital theory instead of ab initio
or DFT methods.331,332As mentioned in Section 2.1, some
of the integrals evaluated in the ab initio methods are replaced
by parameters in some of the semiempirical methods; in other
semiempirical methods, the parameters are scaling factors
or occur in additive terms. In any of these methods, the
parameters can be optimized in a general way against a broad
or representative database, or they can be modified to
reproduce the energetics, some frequencies (for instance the
imaginary frequency at the transition state), and/or some key
geometric parameters important for a specific reaction or
range of reactions. In general, these parameters are reaction
dependent, and therefore this produces a semiempirical

V ) mineiv(VRR
A VRP

A

VRP
A VPP

A ) + VN
B (2.3.16)

V ) mineiv(VRR
A + VN

B VRP
A

VRP
A VPP

A + VN
B ) (2.3.17)

V ) mineiv(VR
AB VRP

A

VRP
A VR

AB ) (2.3.18)
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method with specific reaction parameters (SRPs). This
approach is quite flexible, and since its introduction in
1991164 many groups have used it to obtain potentials for
classical trajectories or to evaluate thermal rate con-
stants.174,175,333-335 The use of genetic algorithms to optimize
the SRPs is especially powerful.336,337

An example of a reaction where various approaches may
be compared is H+ CH4 f H2 + CH3. A sequence of
successively improved semiempirical valence bond sur-
faces218,297,338,339eventually led to the refined surface of
Espinosa-Garcia,339 which has been employed for several
approximate quantal340 and quasiclassical171-173,341 studies.
Some of the trajectory studies171-173 were compared to direct
dynamics with B3LYP. Unfortunately, the Espinosa-Garcia
surface has a classical barrier height of only 12.9 kcal/mol,
whereas the current “best estimate” is 14.8 kcal/mol;342

B3LYP has a similar deficiency since it has a barrier of 9.4
kcal/mol, which is not surprising since Table 2 shows that
B3LYP systematically underestimates barrier heights for
hydrogen transfers. Direct dynamics calculations of rate
constants were carried out with multicoefficient correlation
methods with specific reaction parameters, in particular,
MCG3-SRP, which yielded the most accurate available
potential energy surface for any reaction with this many
atoms.342 Later quantum mechanical calculations with a fitted
ab initio surface gave similar results.343 Another fitted ab
initio potential energy surface in good agreement with the
MCG3-SRP one has been published more recently.252

2.4. Rate Theory for Simple Barrier Reactions

2.4.1. Conventional Transition State Theory

The variation of a thermal rate constant with temperature
can be described phenomenologically in terms of the
Arrhenius equation (see eq 2.2.1), which contains the
activation energy as a key parameter. Transition state theory
also centers attention on the activation process. The transition
state divides phase space (the space of atomic coordinates
and momenta) into a reactants region and a products region
with a “dividing surface” normal to the reaction coordinate.
(Technically, we might say dividing hypersurface, but
“surface” is a less formal shorthand for “hypersurface.”) In
some cases, the reaction-coordinate definition and dividing-
surface definition depend only on atomic coordinates (not
on atomic coordinates and momenta), in which case the
dividing surface becomes a surface in coordinate space, a
special case of a surface in phase space.

A number of implicit assumptions are needed to derive
the conventional TST expression, in particular (1) that the
Born-Oppenheimer approximation is valid; (2) that the
reactant molecules are distributed among their states in
accordance with a Maxwell-Boltzmann distribution (this is
called the local-equilibrium approximation; the word “local”
is needed because reactants are not in equilibrium with
products); (3) that a dynamical bottleneck can be identified
such that once the reacting trajectories reach the dynamical
bottleneck, they proceed to products without ever returning
(and similarly any product trajectories that reach the dynami-
cal bottleneck proceed straight to reactants without returning
to the bottleneck); (4) that quantum effects may be added
by replacing the classical partition functions that result from
the above assumptions by quantum mechanical partition
functions; and (5) that the dynamical bottleneck (transition
state) may be identified as a coordinate-space hypersurface

that divides reactants from products and that passes through
a saddle point orthogonal to its imaginary-frequency normal
mode, which is the reaction coordinate. [Looking ahead,
variational transition state theory will retain assumptions
(1-4) but improve on (5).]

The classical TST expression to evaluate thermal bimo-
lecular rate constants is344,345

whereV‡ is the barrier height from reactants to the transition
state,QC

‡(T) is the classical (C) partition function of the
transition state, andΦC

R(T) is the reactants classical parti-
tion function per unit volume. Conventional TST requires a
very limited knowledge of the PES, namely, the transition
state energy and the partition functions at the reactants and
transition state. Thus, conventional TST states that thermal
rate constants can be calculated by focusing exclusively on
the saddle point, and if we are only interested in the total
rate constant, what happens before or after is irrelevant.

TST also introduces the concept of “reaction coordinate”
and the assumption that motion along it can be separated
from all the other degrees of freedom. It has been recognized
since the early days of TST that the choice of the reaction
coordinate is crucial. Since the reaction coordinate is the
degree of freedom normal to the transition state, which is a
surface, a choice of transition state is equivalent to choosing
a reaction coordinate plus choosing the location of a surface
along this coordinate. In Section 2.4.2, we will consider
choosing the transition state that way. First though, it is useful
to comment on notation. When we choose the transition state
as normal to the imaginary frequency normal mode coordi-
nate of the saddle point structure and locate it so it cuts that
coordinate at the saddle point, we often call this the
conventional transition state. Any other choice is called a
generalized transition state. In variational transition state
theory, we will have a criterion for choosing the best of these
generalized transition states, and that is called the variational
transition state. Very often though, one just says transition
state, and the meaning (conventional, generalized, or varia-
tional) is supposed to be clear from the context.

Equation 2.4.1 can be reformulated in quasithermodynamic
terms by using the connection between the equilibrium
constant and the Gibbs standard free energy. Thus, we rewrite
eq 2.4.1 as

where K‡ is a quasiequilibrium constant for forming the
transition state; the “quasi” refers to the important346 distinc-
tion that the transition state is not a true thermodynamic
species because it is missing one degree of freedom. (Recall
that a hypersurface, such as a transition state, has one less
degree of freedom than the volume in which it is embedded.)
Then by analogy to true thermodynamic relations, we can
write

Equation 2.4.3 provides the historical motivation for the
widespread use of eq 2.2.3 and can be written as

k‡(T) ) 1
âh

QC
‡(T)

ΦC
R(T)

exp(-âV‡) (2.4.1)

k‡(T) ) 1
âh

K‡(T) (2.4.2)

k(T) ) 1
âh

Ko exp[-∆G‡,o/RT] (2.4.3)
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If we use a standard state of 1 atm and equate this to the
Arrhenius equation, standard thermodynamic analysis
yields347,348

and343

or

whereKo is the reciprocal of the concentration that corre-
sponds to a pressure of 1 atm at temperatureT.

2.4.2. Variational Transition State Theory
Transition state theory can be derived from a dynamical

approach by statistical mechanics. In the quasiequilibrium
formulation given above, the emphasis is on the equilibrium
distribution in the dividing surface that separates reactants
from products and on the statistical character of the equi-
librium approximation, and the factor 1/âh can be obtained
from simple models of reaction coordinate motion. In
contrast, in the dynamical formulation of the theory, TST is
derived, including the 1/âh factor, by a rigorous statistical
mechanical calculation of the flux through a phase-space or
coordinate-space dividing surface. In the latter approach,
developed by Horiuti,349 Wigner,350 and Keck351,352(see also
Pechukas,353 Tucker and Truhlar,354 Garrett,355 and Garrett
and Truhlar356), the TST rate constant is the one-way
equilibrium flux coefficient through the dividing surface.
Then, the fundamental assumption of transition state theory
is that this one-way flux through the dividing surface equals
the net flux. This will be true if all trajectories that cross the
dividing surface in the direction of products originated at
reactants and will not cross this surface again before leading
to products. Pechukas and Pollak argued convincingly that,
in a classical world, conventional transition state theory is
accurate near the threshold of a chemical reaction.357-359

The motion of anN-atom system on a PES can be
described in terms of 3N atomic coordinates, or, in particular
mass-scaled Cartesian coordinates. These coordinates360 are
the same as mass-weighted Cartesian coordinates149 but with
a mass factor ofµ-1/2. If Si,γ, for γ ) x, y, z, are the Cartesian
coordinates of atomi with respect to a fixed origin or with
respect to the center-of-mass of the system, the mass-scaled
coordinates are defined as

For a bimolecular reaction, it is sometimes convenient to
define the scaling massµ as the reduced mass of the relative
motion of reactants,µ ) mAmB/(mA + mB), wheremA and
mB are the masses of the reactants A and B, respectively.
Alternatively, it is very popular to setµ equal to 1 amu. In
this system of coordinates the kinetic energy associated with
the nuclear motion is diagonal and has the same massµ

associated with motion in any direction (which is why the
coordinates are called isoinertial), and so the 3N-dimensional
motion of the many-atom system governed by the PESV(Riγ)
is equivalent to the motion of a point mass onV(R), where
R denotes the collection of theRj coordinates. An orthogonal
transformation of these coordinates provides new coordinates,
for example, mobile coordinates,361 that are also isoinertial.

Isoinertial coordinates have many advantages, and they
will be used throughout this review. A trivial advantage is
that they make it easier to write down and derive many of
the dynamical equations. A more fundamental advantage is
that they allow a multiparticle generalization of concepts such
as centrifugal forces; for example, the tendency of a bobsled
to veer off its minimum energy path toward the convex side
of the path has an analogue for chemical reactions that may
be expressed quantitatively in terms of the curvature of the
reaction path in isoinertial coordinates.362-364 Furthermore,
dividing surfaces orthogonal to the minimum-energy path
in isoinertial coordinates have been found to be very good
dividing surfaces for TST.365

Next, following previous presentations,352,354 we derive
variational transition state theory for a system described by
classical mechanics. From a classical mechanical point of
view, a reactive system ofN atoms can be fully described at
a given timet by a 6N-dimensional point (p,R) in phase
space and the Hamiltonian

The densityF(p,R) of phase points in the ensemble satisfies
the continuity equation

wherev is the generalized velocity of a point in phase space
and∇. is the generalized divergence operator.

By following the flow of points between different regions
in phase space, it is possible to study the course of the
chemical reaction in this ensemble.349,352,354,366First consider
a volumeΩ in phase space corresponding to reactants. The
integration of eq 2.4.10 over this volume yields,

where

The left-hand-side of eq 2.4.11 is the time derivative of the
numberNR of reactant systems in the ensemble in the volume
Ω, and so

Then the integral of eq 2.4.13 can be transformed into a
surface integral using Gauss’ theorem, yielding

where ds is a differential element of area belonging to the
transition state surfaceS, andn is a unit vector orthogonal

k‡(T) ) 1
âh

Ko exp[∆S‡,o/R] exp[-∆H‡,o/RT] (2.4.4)

∆H‡,o ) Ea - 2RT (2.4.5)

A ) (Koe2

âh ) exp(∆S‡,o/R) (2.4.6)

∆S‡,o ) R ln(âhA/Ko) - 2R (2.4.7)

Rj ) (mi

µ )1/2

Siγ; i ) 1,...,N; γ ) x,y,z; j ) 1... 3N
(2.4.8)

H(p,R) ) T(p) + V(R) (2.4.9)

∂F
∂t

+ ∇‚Fv ) 0 (2.4.10)

- ∂

∂t∫Ωd6NτF ) ∫Ωd6Nτ∇‚Fv (2.4.11)

d6Nτ ) ∏
i)1

3N

dpidRi (2.4.12)

- dNR

dt
) ∫Ωd6Nτ∇‚Fv (2.4.13)

- dNR

dt
) ∫S

dsF(v‚n) (2.4.14)
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to the surfaceSthat points out of the volumeΩ. The surface
is a (6N - 1)-dimensional hyperplane (the dividing surface)
that separates reactants from products, and all the flux from
the volumeΩ passes through it. Therefore, eq 2.4.14 equals
the one-way fluxF+ (the + sign indicates that the flux is
calculated in the forward direction, that is, from reactants to
products) through this hyperplane:

whereS+ is the portion of the phase space dividing surface
for which (v‚n) > 0.

Next rotate the axes so that one of the 3N new coordinates
is perpendicular to the dividing surface. This coordinate is
our reaction coordinate and will be labeled asz; the
remaining coordinates are calledu ) u1, u2,...u3N-1, and their
conjugate momenta are calledpu. Since we are assuming
here thatz is a rectilinear coordinate (an assumption that
will be relaxed later in the review), the dividing surface is a
hyperplane. The value ofz at the dividing surface will be
denoted asz*. By construction:

wherepz is the momentum conjugate toz. By separating this
coordinate and momentum from the rest, the one-way flux
is given by

Now, if we assume that the internal degrees of freedom
of the reactants are in thermal equilibrium, the density of
states corresponds to a Boltzmann distribution

so that

and the one-way flux through the dividing surface is given
by

The superscript GT indicates that the dividing surface atz
is a generalized transition-state, andz ) z* because the
integral is over the surface at this particular value ofz. The
integration overpz leads to the one-way flux through the
generalized transition-state atz ) z*

For a bimolecular reaction, the classical mechanical rate
constant is given in terms of the flux from reactants to
products by

whereV is the volume, and the subscript on the left-hand
side reminds us that we are using classical mechanics here.
In the reactant region, the reactants are independent of each
other, and the Hamiltonian that describes them is separable
in the coordinates of A and B. Using this separability and
eq 2.4.19, we can write

whereΦC
A andΦC

B are classical partition functions of both
reactants per unit volume.

On the other hand, if we make the TST assumption and
replace F(T) by FGT(T, z*) in eq 2.4.22 and define a
generalized transition-state “partition function” that has the
potential energyVRP(z ) z*) as its zero of energy, we obtain

Then eq 2.4.22 becomes

It is useful to separate the overall translation from the
partition functions, since it is irrelevant. Taking into account
that

where X is GT, A, or B, the ratio of all translational partition
functions is

and the thermal rate constant for a bimolecular reaction can
be rewritten as

whereQC
GT is the partition function defined by

and

We have presented the derivation of eq 2.4.28 because it
is the central result of TST. Using standard statistical
mechanical relations,367,368 one can show that eq 2.4.28 is
equivalent to eq 2.2.2 withγ(T) ) 1. In classical mechanics
the TST rate constant would be the exact local-equilibrium
result if all the trajectories that cross the dividing surface in
the direction of products originated on the reactant side and,
having crossed once, never return. ThenFGT(T, z*) > F(T),

F+ ) ∫S+
dsF(v‚n) (2.4.15)

v‚n ) dz
dt

)
pz

µ
> 0 (2.4.16)

F+ ) ∫z)z*
d6N-2τ∫0

∞
dpzF

pz

µ
(2.4.17)

F ) F0 exp[-âH] (2.4.18)

NR ) F0∫Ωd6Nτ exp[-âH] (2.4.19)

F+ ) F0 ∫d6N-2τ exp[-âHGT(u,pu; z )

z*)]∫0

∞
dpz

pz

µ
exp[-âpz

2/2µ] (2.4.20)

FGT(T,z*) ) F0kBT∫d6N-2τ exp[-âHGT(u,pu; z ) z*)]
(2.4.21)

kC(T) )
F(T)

V[A][B]
)

F(T)V
NANB

(2.4.22)

NANB ) F0h
3nAVΦC

A(T)h3nBVΦC
B(T) (2.4.23)

ΦC
GT(T,z*) )

exp[VRP(z ) z*)]

Vh(3N-1) ∫d6N-2τ

exp[-âHGT(u,pu; z ) z*)] (2.4.24)

kC
GT(T,z*) ) 1

âh

ΦC
GT(T,z*)

ΦC
A(T)ΦC

B(T)
exp[-âVRP(z ) z*)] (2.4.25)

Φtrans
X (T) ) (2πmX/h2â)3/2 (2.4.26)

1
Φrel(T)

) (h2â
2πµ)3/2

(2.4.27)

kC
GT(T,z*) ) 1

âh

QC
GT(T,z*)

ΦC
R(T)

exp[-âVRP(z ) z*)] (2.4.28)

ΦC
GT(T,z*) ) Φtrans

GT (T)QC
GT(T,z*) (2.4.29)

ΦC
R(T) ) Φrel(T)QC

A(T)QC
B(T) (2.4.30)
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and the TST rate constant provides an upper bound to the
true classical rate constant. The “quasiequilibrium hypoth-
esis” assumed by Eyring in his formulation of TST is thus
equivalent to the “nonrecrossing” condition, and it is exact
if all of the systems that cross the dividing surface in the
direction of products do so only once. Transition state theory
is sometimes incorrectly categorized as a nondynamical
statistical theory. Actually, it is a statistical dynamical theory
in that the problem of evaluating the one-way flux through
a dividing surface by running classical trajectories on a 3N-
dimensional potential energy surface is reduced to a local
quasiequilibrium calculation.

The next step is to find good practical methods for
choosing the dividing surface so that the local one-way flux
equals, to a good approximation, the global net flux. The
method for this that we discuss is the one proposed by Garrett
and Truhlar.360,365,369The dividing surface is perpendicular
to the minimum energy path (MEP) through isoinertial
coordinate spaces; this path370,371is also called the intrinsic372

reaction path. The MEP is chosen as the path of steepest
descent, starting at the transition state, in isoinertial coor-
dinates. In general, the distance along the MEP is denoted
by s, with the saddle point ats ) 0, the reactants region
corresponding tos < 0, and the products region correspond-
ing to s > 0. For a reacting system composed ofN atoms
with the 3N mass-scaled coordinatesR, it is possible to rotate
and translate these coordinates in such a way that the rotated
coordinatez is tangent to the MEP ats, with the value of
zero at the point of tangency and with coordinates
{u1(s),...u3N-1(s)} that are orthogonal to the MEP ats.
Although the MEP follows a curved path, it is possible to
define, at each value ofs, a Cartesian coordinate system that
has one coordinate directed along the MEP ats; this set of
coordinates{u1(s),...u3N-1(s), s} are called local natural
collision coordinates. The position of a particular dividing
surface along the MEP will be determined by thes value at
which it intersects the MEP. Hereafter, we designate asx(s)
the set of isoinertial mass-scaled Cartesian coordinates along
the MEP.

With these considerations, we can write an expression sim-
ilar to eq 2.4.28 but with the rate constant as function ofs

As discussed in the paragraph below eq 2.4.30 the rate
constant calculated this way is always larger than (or equal
to) the correct classical mechanical local-equilibrium result.
Therefore we want to minimize the calculated rate constant.
The resulting rate expression is known as canonical varia-
tional transition state theory (CVTST) or simply canonical
variational theory (CVT);365,369,373the resulting rate constant
is

wheres ) s*
CVT is the optimized position of the dividing

surface. This condition is equivalent to

with the condition that the second derivative is greater than
zero. One should also remember the condition that the

dividing surface must separate the reactant region of con-
figuration space or phase space from the product region. Then
the classical mechanical CVT rate constant is given by

To provide physical insight into this minimization process,
we write eq 2.4.34 in a quasithermodynamic form like eq
2.4.3, yielding

whereK‡,o is the reciprocal of the standard-state concentra-
tion, and∆GC

GT,o(T,s) is a quasithermodynamic quantity, as
discussed above. Condition (2.4.33) is equivalent to

and therefore CVT is equivalent to a maximum free energy
of activation criterion.12,360,365,369,374-377 (except for a Jacobian
factor378-381 discussed in Section 2.4.5). The canonical
variational transition state location is a compromise of an
“entropic” factor associated with the partition functions and
an “energetic” factor associated with the exponential factor,382

whereas the conventional transition state location is entirely
determined by the energetic criterion, which puts it at the
highest energy point on the minimum energy path, i.e., at
the saddle point.

In summary, we have reduced the problem of running
trajectories on a “global” 3N potential energy surface to the
evaluation of the flux through a (3N - 1)-dimensional
dividing surface. To find a reasonably accurate dividing
surface in a practical way, one computes a minimum energy
path and searches for the optimum dividing surface from a
one-parameter sequence of hypersurfaces orthogonal to this
path. A hypersurface defined this way is almost surely not
the best choice in every case; however, for reactions with
tight saddle points it is usually very good.

The MEP, defined as above, can be calculated by the
solution of the steepest-descents equation

whereĝ ) g/|g| is the normalized gradient of the potential.
The first step along the MEP starting from the saddle point
cannot be calculated this way because the gradient at any
stationary point is zero. At the saddle point, the direction
along the MEP is given by the unbound normal coordinate
associated with the imaginary frequency. Finding this direc-
tion requires the force constant matrix (or Hessian)F at the
transition state structurex‡; since the elements of the force
constant matrix are second partial derivatures of the potential,
this matrix is also called the Hessian. The force constant
matrix is diagonalized by the orthogonal transformation

where † indicates transpose,L (x‡) is the orthonormal matrix
of eigenvectors whose columnsLm(x‡) correspond to the
normal-mode directions at the saddle point andΛ(x‡) is a

kC
GT(T,s) ) 1

âh

QC
GT(T,s)

ΦC
R(T)

exp[-âVMEP(s)] (2.4.31)

kC
CVT(T) ) kC

GT(T,s*
CVT) ) min

s
kC

GT(T,s) (2.4.32)

∂

∂s
[kC

GT(T,s)]|s)s*
CVT ) 0 (2.4.33)

kC
CVT(T) ) 1

âh

QC
GT(T,s ) s*

CVT)

ΦC
R(T)

exp[-âVMEP(s*
CVT)]

(2.4.34)

kC
GT(T,s) ) K‡,o

âh
exp[-∆GC

GT,o(T,s)/RT] (2.4.35)

∂

∂s
[∆GC

GT,o(T,s)]|s)s*
CVT ) 0 (2.4.36)

dx
ds

) -ĝ (2.4.37)

L (x‡)†F(x‡)L (x‡) ) Λ(x‡) (2.4.38)
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diagonal matrix that contains the eigenvalues calledλm(0),
which are the normal-mode force constants at the saddle
point, and are related to the normal-mode frequencies by

At the saddle point there areF - 1 positive eigenvalues
corresponding to the modes perpendicular to the reaction
coordinate (hereafterF is the number of normal mode
vibrations, equal to 3N - 6 for a nonlinear molecule and
3N - 5 for a linear molecule since five modes for a linear
molecule and six for a nonlinear molecule correspond to the
overall translations and rotations) and one negative eigen-
value (denotedλF(x‡)), corresponding to the reaction coor-
dinate. This normal-mode has an imaginary frequencyω‡

with an eigenvectorLF(x‡) in the direction of the reaction
coordinate. Then, the first step along the MEP can be taken
along this eigenvector360,383

where the sign indicates whether the direction is toward
reactants or toward products. The procedure just presented
corresponds to using a quadratic expansion of the potential
at the saddle point; another possibility is to use a cubic
expansion around the saddle point.384

After the first step, the gradient is no longer zero and the
next steps can be taken in the direction of the normalized
gradient. One of the simplest algorithms is the Euler single-
step method or Euler steepest-descent (ESD) method162 in
which the next geometry along the MEP is calculated as

This algorithm requires quite small steps and therefore a large
number of potential energy gradient evaluations. This is not
a problem if the PES is given in analytical form, but it can
be very time-consuming for high-level direct dynamics.
Improvements to this method and other more efficient
methods that may use larger steps are described else-
where.141,162,384-389 Some of these algorithms, such as the
Page-McIver method,384 make use of Hessians,F(s), along
the MEP.

To calculate the vibrational part ofQC
GT (T,s) in eq 2.4.31

we need to obtain generalized normal-mode frequencies
along the reaction path. These are called generalized because
true normal-mode analysis is only defined at stationary points
and for systems that are not missing any degrees of freedom.
The elimination of the reaction coordinate is accomplished
by rotating the coordinate system369 or by a projection
operator;390 here we describe the latter method. It involves
diagonalizing the projected Hessian matrix,FP(s), which is
obtained from383,390

whereP is a matrix that projects onto the direction along
the reaction path and onto the overall translations and
rotations. The diagonalization is carried out in the same way
as for stationary points, with an orthogonal transformation
of the type

and the eigenvaluesλm(s) are related to the generalized
normal-mode frequenciesωm(s) by

whereF - 1 positive values correspond to the generalized
frequencies of the bound normal modes at that point on the
MEP and the remaining 3N - F + 1 eigenvalues are zero.
The directions along the various generalized normal modes
m are given by the corresponding columns of theLGT(s)
matrix.

In the above discussion, TST has been derived by using
classical mechanics, but for most reactions quantum effects,
especially zero-point energy and sometimes tunneling, cannot
be ignored. Next we consider including these quantum
effects.

Quantum effects can be included in an ad hoc way in CVT
for the normal modes perpendicular to the reaction coordinate
by adiabatic quantization of their partition functions. Here
adiabatic means that, at each value ofs, the energy levels of
motions transverse to the reaction coordinate are quantized
as if motion along the reaction coordinate were infinitesi-
mally slow. The resulting transition state theory expressions
are called quasiclassical, and we drop the subscript C.

The chief quantum effect on the reaction coordinate is
penetration through the barrier (tunneling effect), which is
most readily treated by using a semiclassical model. The
quantum effects on the reaction coordinate are included
through a multiplicative ground-state (/G) semiclassical
transmission factorκCVT/G(T), and therefore adding quantum
effects to eq 2.4.34 yields

where κ is a transmission coefficient that accounts for
tunneling, and

We will defer discussion ofκ and tunneling to Section 2.4.4
and focus here on the rest of the quantized formalism.

In eq 2.4.46, QGT(T,s) and ΦR(T) are the quantum
mechanical partition functions for the generalized transition
state and reactants, respectively, where

and

whereΦrel is the relative translational partition function per
unit volume given by eq 2.4.27 andQel, Qvib, andQrot are
the electronic, vibrational, and rotational partition functions,
respectively. Notice that we have now removed the subscripts
C, and all partition functions are now to be computed in
principle from quantized energy levels. In practice, it is
almost always a good approximation to still treat rotation as
classical, but quantization of vibrations is very important.

ωm(x‡) ) (λm(x‡)

µ )1/2

, m ) 1, ..., 3N (2.4.39)

x(s1 ) (δs) ) x‡ ( δsLF(s
‡) (2.4.40)

x(sj ) sj-1 ( δs) ) x(sj-1) - δs
g[x(sj-1)]

|g[x(sj-1)]|
(2.4.41)

FP(s) ) [1 - P(s)]F(s)[1 - P(s)] (2.4.42)

LGT(s)†FP(s)LGT(s) ) Λ(s) (2.4.43)

ωm(s) ) (λm(s)

µ )1/2

, m ) 1, ..., 3N (2.4.44)

κ
CVT/G(T) ) κ(T)kCVT(T) (2.4.45)

kCVT(T) ) 1
âh

QGT(T,s ) s*
CVT)

ΦR(T)
exp[-âVMEP(s*

CVT)]

(2.4.46)

QGT(T,s) ) Qel
GT(T)Qvib

GT(T,s)Qrot
GT(T,s) (2.4.47)

ΦR(T) ) Φrel(T)Qel
A(T)Qvib

A (T)Qrot
A (T)Qel

B(T)Qvib
B (T)Qrot

B (T)

(2.4.48)
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In eqs 2.4.47 and 2.4.48 we ignore the coupling between
the electronic, vibrational, and rotational partition functions.

The electronic partition function of the generalized transi-
tion state is given by

where

whereγ is the electronic quantum number withγ ) 1 being
the ground state so that

with all quantities in eqs 2.4.49-2.4.51 being evaluated on
the MEP, and wheredγ

GT(s) is the degeneracy of the
electronic stateγ. Usually we approximateQel

GT(T,s) by
Qel

GT(T, s ) 0).
For the rotational partition functionQrot

GT(T,s), since the
rotational levels are generally close together, we approximate
the quantal partition function by the classical one. It has been
shown for atom-diatom reactions that this approximation
gives an error in CVT rate constants of not more than about
1% for room temperature and above.28 For a linear general-
ized transition state, the classical rotation partition is given
by

whereI(s) is the moment of inertia, andσrot is the rotational
symmetry number. For a nonlinear GTS the rotational
partition function is

whereIA, IB, andIC are the principal moments of inertia.
The vibrational partition function at a generalized transition

state is evaluated within the harmonic approximation by

with Qvib,m
GT (T,s) being the vibrational partition function of

modem,

where the harmonic vibrational energy of leveln,

is measured at the bottom of the local vibrational well, that
is, atVMEP(s). The sum of eq 2.4.55 should finish with the
last term for whichEvib,m

GT (nm,s) is less than the lowest bond
dissociation asymptote of the system,365,391,392or it could also
include all the quasibound states that are effectively bound
on the time scale of stabilizing collisions; but instead, if we
assume that the contribution from high energy levels is

negligible, the sum can be extended to include all the
harmonic levels, and eq 2.4.55 can be replaced by the
analytical expression

In the case of the reactants, the partitions functions are
given by similar expressions to those just presented but using
the equilibrium moments of inertia and the equilibrium
frequencies of each of the reactants.

The incorporation of quantum effects in the partition
functions for the bound degrees of freedom allow us to
include the zero-point energy to the classical potential along
the PES. Since we are assuming that the generalized normal-
mode frequencies follow the reaction coordinate adiabatically
(the reaction coordinate is formally considered the slowest
motion at a dynamical bottleneck), we can define the vibra-
tionally adiabatic ground-state potential curve,Va

G(s) as

whereEint
G (s) is the total vibrational zero-point energy:

and in the harmonic approximationEint
G (s) is simply:

The maximum of the vibrationally adiabatic potential
coincides with the maximum of the Gibbs free energy of
activation at T ) 0 K.28 Anharmonicity may have an
important influence on the computed thermal rate constant,
and in the next subsection we describe different methods to
include anharmonicity.

Another way of improving CVT is to consider a micro-
canonical ensemble, that is, an ensemble in which the system
is characterized by a given total energy rather than by a
temperature (as in a canonical ensemble). Such a treatment
is more complete than using a canonical ensemble because
it takes account of the conservation of the total energy in
each collision. The resulting rate constant is called micro-
canonical variational transition state theory or simply mi-
crocanonical variational theory (µVT). To derive theµVT
rate constant we start from eqs 2.2.6 and 2.2.7. In eq 2.2.6,
the Boltzmann weighting factors represent the fraction of
reactant molecules in a given internal state when the system
is in thermal equilibrium

where X is A if k is i and where X is B ifk ) j; dk
X is a

degeneracy; andEint,k
X andQint

X (T) are the internal energy of
the reactant X in statek and the internal partition function
at temperatureT, respectively. Therefore

Qvib,m
GT (T,s) )

exp[-(1/2)âpωm(s)]

{1 - exp[âpωm(s)]}
(2.4.57)

Va
G(s) ) VMEP(s) + Eint

G (s) (2.4.58)

Eint
G (s) ) ∑

m)1

F-1

Evib,m
GT (nm ) 0,s) (2.4.59)

Eint
G (s) ) (1/2)∑

m)1

F-1

pωm(s) (2.4.60)

wk
X )

dk
Xe-âEint,k

X

Qint
X (T)

(2.4.61)

Qint
X (T) ) ∑

k

dint,k
X exp[-âEk

X(T)] (2.4.62)

Qel
GT(T,s) ) ∑

γ)1

dγ
GT(s) exp{-â[Vγ(s) - VMEP(s)]}

(2.4.49)

Vγ(s) ) Eγ
(el)(s) + VNR(s) (2.4.50)

VMEP(s) ) V1(s) ) V(s) (2.4.51)

Qrot
GT(T,s) )

2I(s)

p2âσrot

(2.4.52)

Qrot
GT(T,s) ) [( 2

p2â)3
πIA(s)IB(s)IC(s)]1/2

/σrot (2.4.53)

Qvib
GT(T,s) ) ∏

m)1

F-1

Qvib,m
GT (T,s) (2.4.54)

Qvib,m
GT (T,s) ) ∑

nm

exp[-âEvib,m
GT (nm,s)] (2.4.55)

Evib,m
GT (nm,s) ) (nm + 1

2)pωm(s) (2.4.56)
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Thus, the total rate constant is related to the state-selected
rate constants by

Following Appendix I of ref 383 then leads to an
expression of the thermal rate constant as a function of the
state-selected reaction probabilityPR

J

wherel is the quantum number associated withL, andml is
the projection of this orbital quantum number on an arbitrary
space-fixed axis,

and Pijlml

J is the reaction probability as a function of the
rotational and vibrational quantum numbers of reactants and
also l, ml, and total angular momentumJ. The factor of 2J
+ 1 results from a sum over 2J + 1 values ofMJ, the
component ofJ on an arbitrary space-fixed axis, since the
probabilities are independent ofMJ. Let R denote the
collective set of quantum numbersijlml. ThenJ, MJ, andR
represent a “channel” specified by a complete set of quantum
numbers labeling the initial state of a collision.

Next define theJ-resolved cumulative reaction probability
NJ(E) as393-396

in terms of which eq 2.4.64 can be rewritten as

Summing overJ gives

where the cumulative reaction probability is397-399

This result is exact.
The transition state theory approximation to eq 2.4.68 is

Each of the probabilities in eqs 2.4.64 and 2.4.66 satisfies

These probabilities are labeled by the quantum numbers that
describe the initial state of a collision. We could instead
specify the probabilities by a complete set of quantum

numbersJ, MJ, andR̃ that label the members of a complete
basis set at the transition state. Then eq 2.4.69 would be

The transition state approximation is to replace this by

whereΘ is the Heaviside function, andER̃
JMJ is the energy

of stateR̃ with rotational quantum numbersJ andMJ at the
transition state.

Actually PR̃
JMJ (E) is not a physical observable, and it is

not well defined, but its only purpose is to motivate eq 2.4.73.
In this equation,ER̃

JMJ is not actually well-defined either
(since the transition state has a finite lifetime), but we have
already used transition state energy levels in computing
canonical partition functions, so that is not a serious
limitation. Furthermore, in Section 3.1, we will see that
accurate quantum mechanical scattering calculations lend
support to the existence of quantized energy levels of the
transition state.

If we designateNvr
GT(E,s) as the number of vibrational-

rotational states with energy less thanE at a given generalized
transition state, then

Microcanonical variational theory is given by minimizing
the value ofNvr

GT(E,s), that is

or equivalently

The derivation above shows why a minimum-number-of
states criterion should be preferred to a minimum-density-
of-states criterion to evaluate the microcanonical rate con-
stant.369

Again we assume that rotation and vibration are separable
with vibrational quantum numbers denotedn. This yields
for Nvr

GT(E,s):

where forNrot
GT(E,s) we use the classical approximation.383

If we calculateNvr
GT(E, s ) s*

CVT) we obtain the CVT
thermal rate constant. Another possibility is to optimize the
generalized transition state microcanonically for energies up
to the microcanonical variational threshold energy and
canonically for higher-energy contributions. This leads to
the improved canonical variational theory (ICVT),383,400

which has the same threshold asµVT but the calculations
are almost as simple as for CVT. One can easily show that

k(T) ) [Qint
A (T)Qint

B (T)]-1∑
i,j

di
Adj

Bkij(T)

exp[-â(Eint,i
A + Eint,j

B )] (2.4.63)
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J (E) exp(-âE)âdE
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B (2.4.65)

NJ(E) ) ∑
ijlml

Pijlml

J (E) ) ∑
R

PR
J(E) (2.4.66)

k(T) )
1

âhΦR(T)
∑

J

(2J + 1)∫0

∞
NJ(E) exp(-âE)âdE

(2.4.67)

k(T) ) 1

âhΦR(T)
∫0

∞
N(E) exp(-âE)âdE (2.4.68)

N(E) ) ∑
J

(2J + 1)NJ(E) ) ∑
J
∑
MJ

∑
R

PR
JMJ(E) (2.4.69)

kµVT(T) ) 1

âhΦR(T)
∫0

∞
N‡(E) exp(-âE)âdE (2.4.70)

0 e Pijlml

J e 1 (2.4.71)

N(E) ) ∑
J
∑
MJ

∑
R̃

PR̃
JMJ(E) (2.4.72)

N‡(E) ) ∑
J
∑
MJ

∑
R̃

Θ(E - ER̃
JMJ) (2.4.73)

N‡(E) ) Nvr
GT(E,s) (2.4.74)

NµVT(E) ) min
s

Nvr
GT(E,s) (2.4.75)

∂Nvr
GT(E,s)

∂s
|
s)s*

µVT(E)
) 0 (2.4.76)

Nvr
GT(E,s) ) ∑

n

Θ[E - VMEP(s) -

Evib
GT(n,s)]Nrot

GT[E - VMEP(s) - Evib
GT(n,s),s] (2.4.77)

kCTST g kCVT g kICVT g kµVT (2.4.78)
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where CTST denotes conventional TST, i.e., the dividing
surface at the saddle point.

Full details of VTST calculations are given else-
where.383,401,402

Next we present some examples to illustrate the difference
between conventional TST, CVT, andµVT. Fernández-
Ramos et al.403 used ab initio dual-level direct dynamics to
study the Cl+ C2H6 f ClH + C2H5 hydrogen abstraction
reaction. Low-level calculations were performed by MP2/
aug-cc-pVDZ electronic structure method,404 and the high-
level calculations were performed using the infinite basis
(IB) electronic structure method75,405to correct the low-level
energies. Although a transition state was located for this
abstraction reaction, after the ZPE contributions are included
there is no barrier in the effective potential along the reaction
coordinate, so important variational effects are expected.

Both VMEP and the vibrationally adiabatic potential

are plotted along the path in Figure 1. At room temperature
the maximum of the free energy (see eq 2.4.36) is located

at s*
CVT ) -0.364 a0, whereass*

µVT is energy dependent (see
eq 2.4.76). Figure 2 shows the variation ofs*

µVT with
energy; it moves in the interval [-0.70 a0, -0.22 a0] at low
energies and remains almost constant above 55 kcal/mol,
where the zero of energy is the potential energy at the
equilibrium structure of reactants. Despite the variation of
s*

µVT, the CVT andµVT rate constants are quite similar at
room temperature with values of 6.54× 10-11 and 6.08×
10-11 cm3 molecule-1 s-1, respectively, and at higher
temperatures they are even closer. This example shows that
even for reactions with variable transition states the CVT
rate constants are reasonable and economical alternatives to
µVT rate contants. However, the conventional TST rate
constant is 2.33× 10-10 cm3 molecule-1 s-1 and seriously
overestimates the experimental406 value of 5.75× 10-11.

Another interesting example is the comparison of CVT,
ICVT, andµVT with QCT for the room-temperature abstrac-
tion of a bromine atom in the bimolecular HgBr+ Hg f
Hg + Br2 reaction.249 In this case, the QCT rate constants

are smaller than the CVT, ICVT, andµVT rate constants by
factors of 1.58, 1.36, and 1.16, respectively.

For cases in which the transition state is “tight” and no
light particle participates in the reaction, so tunneling is not
important, conventional TST can still provide a reliable
determination of thermal rate constants, and it also provides
insight into reaction mechanisms.407

In the examples just discussed, VTST is applied to study
a particular system, so if we want to study another system,
even if similar, the entire procedure, starting with building
the potential energy surface, has to be repeated. To make it
easier to study a series of reactions, Truong and co-
workers408-412 have presented a method called reaction class
transition state theory (RC-TST), which profits from recog-
nizing the common aspects of a given set of chemical
reactions. Thus, reactions with similar characteristics form
what is called a class, and it is expected that they also share
some similarity in their kinetics parameters. The procedure
involves accurate calculations for one of the reactions, called
the principal reaction, and all the other thermal rate constants
are obtained from empirical relations. Truong applied these
ideas to hydrogen abstraction reactions by hydrogen atoms
with encouraging results.408-412

An important point to keep in mind in using either
conventional or variational transition state theory is that extra
assumptions are required to predict more than the overall
reaction rate. We will present some discussion of product
state distributions in Section 3. Sometimes not only the
product states but even the identity of the products is
inaccessible. This problem arises if two or more products
share a given transition state. This can occur if the reaction
path bifurcates after the transition state.413-421

2.4.3. Anharmonicity
Conventionally, one would compute the reactant partition

function accurately by a sum over states, although in practice
this has only recently become possible for molecules with
more than 3-4 atoms.422 An alternative method to compute
accurate vibrational-rotational partition functions is the

Figure 2. Variation with energy of the location of the minimum
sum of states for the Cl+ C2H6 f ClH + C2H5 reaction.

∆Va
G(s) ) Va

G(s) - Va
G (reactants) (2.4.79)

Figure 1. Plots ofVMEP and relative vibrationally adiabatic potential
∆Va

G along the reaction path for the Cl+ C2H6 f ClH + C2H5
hydrogen abstraction reaction.
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Feynman path integral method, and this approach has been
applied to compute converged partition functions for H2O2,423

the first molecule with a torsion for which an accurate
partition function corresponding to a known potential energy
surface is available. More recently, converged vibrational
partition functionals have also been computed for ethane.424

Before discussing these methods though, we consider some
simpler approximations.

The vibrational partition functions discussed in the previ-
ous section are based on the harmonic approximation for all
the normal modes orthogonal to the reaction path. In this
approach, the partition function is separable and the potential
due to a given normal modem is given by

wherekmm is the principal (the two subscripts are the same)
normal-coordinate force constant, andum(s) is the normal-
mode coordinate for a geometryx close tox(s), specifically,

2.4.3.1. Principal Anharmonicity. In general the vibra-
tional degrees of freedom of the stationary points and
generalized transition states along the path are bound by an
anharmonic potential:

wherekmmm(s) andkmmmm(s) are the third and fourth principal
normal mode force constants. These force constants can be
obtained from numerical derivatives of analytic gradients.383

One difficulty with using this expansion is that the cubic
term is always unbounded from below, and the quartic term
is unbounded from below ifkmmmmis negative. It therefore
requires finesse to include anharmonicity in a practical
scheme.

One approach commonly used to treat anharmonicity is
to assume that the normal modes are independent (not
coupled), so the partition function may still be evaluated by
eq 2.4.54. This section begins with independent normal-mode
(INM) methods, and within the INM framework we discuss
Morse and quartic anharmonicity,360 together with the
Wentzel-Brillouin-Kramers (WKB) method425-427 and the
anharmonicity of bond torsional modes.

To evaluate the energy levels of the 1D potential (2.4.82)
one possibility is to replace that potential by a Morse
function:428

whereDe(s) is the dissociation energy for the vibrational
potential on the PES:

andD is the lowest dissociation energy of the system. The
range parameterâM

(m) is given by

so the potential has the correct force constant at the
minimum. The Morse model in which the parametersDe and

âM
(m) are chosen this way is known as Morse approximation

I.360,365,429The energy levels of this potential are given by428

wherenm is the level index, andxM
(m)(s) is the anharmonic

constant given by

This Morse model does not give any improvement for modes
in which kmmm(s) ) 0, such as the bending modes of linear
systems, out-of-plane modes of planar systems, and certain
stretching motions. This kind of mode can be treated by a
quadratic-quartic model with

which can sometimes be accurately approximated by a
perturbation-variation method to obtain the energy lev-
els.430,431A centrifugal oscillator treatment provides a more
accurate approximation.432 Anharmonicity of bending modes
is often dominated by quartic anharmonicity, and it can be
very significant, especially at high temperature.431

The anharmonicity can be also treated by the WKB
approximation.425-427 Since this method is more expensive,
it might be used only for finding the zero-point energy of
some or all the normal modes. For several atom-diatom
reactions, the results obtained by VTST improve if the WKB
method is used to treat anharmonicity instead of the Morse
model.427

Another important source of error in calculating vibrational
partition functions is the inapplicability of the harmonic
oscillator (HO) approximation for low-frequency torsional
modes. Such modes show a hindered rotation transition from
HO behavior at low temperature to free internal rotation at
high temperature. An interpolatory function that is reasonably
accurate has the form433

whereQm
HR is the approximate hindered-rotor (HR) partition

function, Qm
HO is the harmonic oscillator partition function,

and fm is an interpolating function given by

The interpolating function approaches unity whenwm ) hωm/
kBT goes to infinity, and it approachesQm

FRwm when wm

goes to zero, withQm
FR being the free-rotor (FR) partition

function. For small values ofwm the interpolating function
deviates only quadratically from its limiting form.

Assuming that the torsional degree of freedom is separable,
that the reduced moment of inertia for the hindered rotor is
independent of torsion angle and is known, and that the
torsion potential is the lowest-order cosine potential with the
correct periodicity, results obtained by this formula were
tested against the tables of Pitzer and Gwinn,434,435and the
accuracy obtained was encouraging. However, the separabil-
ity approximation and the simplification of the torsional
potential may cause errors as large as or larger than the

V(m)[s,um(s)] ) (1/2)kmm(s)[um(s)]2 (2.4.80)

um(s) ) [x - x(s)]Lm
GT(s) (2.4.81)

V(m)[s,um(s)] ) 1
2
kmm(s)[um(s)]2 + kmmm(s)[um(s)]3 +

kmmmm(s)[um(s)]4 + ‚‚‚ (2.4.82)

V(m)[s,um(s)] = De(s){exp[-âM
(m)(s)um(s)] - 1}2 (2.4.83)

De ) D - VMEP(s) (2.4.84)

âM
(m)(s) ) [kmm(s)/2De(s)]

1/2 (2.4.85)

Evib,m
GT (n,s) ) pωm(s)(nm + 1/2)[1 - xM

(m)(s)(nm + 1/2)]

(2.4.86)

xM
(m)(s) ) pωm(s)/4De(s) (2.4.87)

V(m)[s,um(s)] = 1
2
kmm(s)[um(s)]2 + kmmmm(s)[um(s)]4

(2.4.88)

Qm
HR ≈ Qm

HOfm (2.4.89)

fm ) tanhQm
FRwm (2.4.90)
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principal anharmonicity, so this success for a separable
torsion may be irrelevant. Furthermore, the reduced moment
of inertia is not independent of torsion angle, and even for
the equilibrium geometry it is not trivial. In a series of
articles, Pitzer and co-workers derived various approximate
and exact expressions for decoupling the internal rotor from
the external rotor, including the case of multiple rotors.436-439

East and Radom have recently provided a useful summary
of their key results.440 Robertson and Wardlaw provide an
alternative viewpoint441 whose extension to all modes could
prove useful in considering nonrigid effects.

In a later publication Chuang and Truhlar442 and Katzer
and Sax443 extended the above formulation to nonsymmetric
torsional modes. Furthermore, McClurg et al.444 and Ayala
and Schlegel445 have suggested alternative procedures involv-
ing the Pitzer-Gwinn approximation with a reference poten-
tial. A goal of the Chuang-Truhlar and Ayala-Schlegel work
was to provide an automated general method, especially for
overcoming the fact that internal rotors are usually coupled
to other low-frequency modes and sometimes coupled to
high-frequency modes, but the methods remain unvalidated.
Further work is required to obtain satisfactory practical
procedures.446

When there is a high barrier between torsional minima at
the transition state, one can, as a first approximation, add
the rate constants for the different conformers of the transition
state with each treated harmonically.447

For applying eq 2.4.70, it is necessary to calculate the
number of states. Counting methods448,449and the Whitten-
Rabinovitch method450 are the most popular methods em-
ployed. At the classical level, it is important to have a
procedure for estimating the density of states for hindered
internal rotors. Forst,451 Knyazev,452,453and McClurg454 have
provided approximate expressions for the density of states
via inverse Laplace transforms of the canonical partition
functions. The Pitzer-Gwinn approximation has also been
employed at the microcanonical level,455 with simple con-
figurational integrals providing the classical state densities.456

Jordan et al. determined analytic classical partition functions
and densities of states for a variety of hindering potentials.457

Knyazev and Tsang have recently generalized their results
for internal rotor state densities to obtain an algorithm for
deriving approximate quantum anharmonic state densities for
arbitrary potential energy forms.458 The algorithm is based
on classical phase space integrals coupled with quantum
corrections obtained via the Pitzer-Gwinn approximation and
inverse Laplace transforms of the canonical partition func-
tions. At the classical level, accurate numbers of states are
easily expressed in terms of phase space integrals that can
generally be reduced to just configurational integrals.459

Monte Carlo evaluation provides a standard procedure for
evaluating the multidimensional configuration integrals.
Direct evaluation (without fitting the potential energy surface)
is feasible up to at least five atoms. Densities of states can
be obtained via either numerical or analytic differentiation.
Quantum corrections may be implemented with a microca-
nonical version of the Pitzer-Gwinn approximation. Alter-
natively, the usual Pitzer-Gwinn approximation could be
applied to the classically evaluated canonical partition
functions, followed by inverse Laplace transforms. Parneix
and co-workers propose a different approach based on the
temperature dependence of the average energy,460 and
Börjesson et al.461 proposed a power-law form with the
parameters determined from thermodynamic data.

2.4.3.2. Mode-Mode Coupling. In a full treatment of
anharmonicity, one cannot consider the modes one at a time.
For example, in addition to torsions, which are 1D internal
rotations, one must also sometimes consider 2D internal
rotations, especially for association reactions, and ap-
proximate formulas have been developed.462,463 More so-
phisticated methods for association reactions are presented
in Section 2.5.2.

Another kind of anharmonicity corresponds to mode-
mode coupling. This involves cross terms (or nonprincipal
force constants) that may couple vibrational modes to each
other464,465and to rotational modes.431 Unless one includes
mode-mode coupling, attempts to include anharmonicity are
almost as likely to make the calculations less accurate than
more accurate because anharmonicity cancels out to some
extent between the reactant and the transition state partition
functions. Anharmonicity in low-frequency bends and tor-
sions that occur in the transition state but not the reactant
are not subject to this cancellation, and anharmonicity in such
modes can be an important source of error in transition state
theory. These modes, however, are particularly difficult to
treat because of mode-mode coupling.

The simplest method to treat anharmonicity quantum
mechanically including mode-mode coupling is perturbation
theory,466-470 and a particularly effective way to use pertur-
bation theory is as follows (this is called simple perturbation
theory or SPT471). In this approach, we write the potential
energy function for a polyatomic molecule as

whereVe is the energy at the equilibrium geometry, andVAnh

contains all the anharmonic terms. The harmonic partition
function of eq 2.4.54 can be rewritten as

whereE0 is the harmonic zero-point energy of the normal
modes, and∆m is the lowest excitation energy of modem.
In SPT, these quantities are obtained by second-order
perturbation theory (PT2)466-470 by going to second order in
cubic force constants and to first order in quartic ones. The
method has been tested466-473 for several cases where accurate
partition functions were available, and it was found to be
efficient and to represent a considerable improvement over
the INM approximation.

One could also consider using perturbation theory for
higher-energy levels, as opposed to just the zero-point level
and fundamentals in eq 2.4.92. This presents two problems.
First, perturbation theory tends to diverge for the higher
levels, and it is much less accurate than for the low levels.
Second, calculating only the zero point energy and funda-
mentals by perturbation theory requires only a subset of the
force constants and is therefore more economical and feas-
ible. Thus, SPT should not be considered a shortcut but rather
an algorithm designed to enhance accuracy and efficiency.

For some molecules, the dominant error in vibrational
pertubation theory is caused by Fermi resonances and other
similar resonances since the original method has singularities
when there are resonances, that is, when one frequency is a
ratio of integers times the other. The PT2 method has been

V ) Ve +
1

2
∑
m)1

F

µωm
2um

2 + VAnh (2.4.91)

Qvib )
exp(-âE0)

∏
m)1

F

[1 - exp(-â∆m)]

(2.4.92)
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corrected474 to remove these singularities in an automatic
way.

Four other approaches to including anharmonicity that
include mode-mode coupling are vibrational configuration
interactions,422,424,475-477 Feynman path integrals,423,478-484 and
the Pitzer-Gwinn approximation,434,485and Einstein-Bril-
louin-Keller (EBK) quantization.486

Vibrational configuration interaction422,424,475-477 (VCI) is
straightforward in that vibrational-rotational energy levels
are calculated variationally, and the partition function is
obtained by summing eigenvalues. However, without using
special techniques VCI rapidly becomes unaffordable as the
molecule size increases. The largest molecule for which
vibrational-rotational partition functions have been com-
puted by summing converged vibrational-rotational eigen-
values is CH4.422 The first simplification one can make is to
assume separable rotation. With this approximation, con-
verged vibrational partition functions have been calculated
for C2H6 using VCI.424 This is a difficult problem because it
involves 18 vibrational degrees of freedom, one which is a
large-amplitude torsion, but its solution was made possible
by using a hierarchical expansion475 of the potential. Future
progress is possible as the potentiality of this method is still
largely untapped.

Feynmann path integrals423,478-484 allow the direct com-
putation of partition functions without separating rotation
from vibration and without converging or even calculating
individual energy levels. The method has been applied
successfully to H2O,480,482H2S,482 H2Se,482 H2O2,423 and seven
isotopologs of H2O2. Note that the tetra-atomic cases involve
a large-amplitude torsion. The key to further success with
this method is the development and exploitation of improved
sampling423 and extrapolation481,483algorithms.

The Pitzer-Gwinn method434,485 is computationally less
demanding than VCI or path integrals. It provides a reason-
ably accurate way to include mode-mode coupling effects
at high temperature.424

The EBK quantization method has been employed486 (with
total angular momentum equal to zero) in the flexible
transition state model discussed further in Section 2.5.2.

An interesting example of a 2D treatment of coupled hin-
dered internal rotors is provided by the reaction of ethylene
with butylbenzene, as recently studied by Van Speybroeck
and co-workers.487 For this reaction, the net effect of the
potential couplings on the canonical rate coefficients corre-
sponds to a reduction in the rate coefficient by only about
30%, due in part to some cancellation of errors in the
partition functions for the transition state and the reactants.

The anharmonic effects on Al3 clusters were estimated to
be factors of 2.5 to 2.9.488

2.4.4. Tunneling, Recrossing, and the Transmission
Coefficient

The above treatment assumes reactants at local equilibrium
and separable, classical reaction coordinate motion. One may
attempt to remove these deficiencies by multiplying the
VTST rate constant by a correction factor, called the
transmission coefficient as in eq 2.2.2. Although the various
physical effects that may be included in a transmission
coefficient are not independent, it is useful for discussion
purposes489 to separate them qualitatively as follows:

where g(T) corrects for nonequilibrium reactants,Γ(T)

corrects for nonseparability of the reaction coordinate at the
classical level, andκ(T) corrects for quantum effects on the
reaction coordinate. If the reaction coordinate truly were
classical and separable, there would be no recrossing; thus
Γ(T) may be considered a recrossing correction. If the
reaction coordinate were classical, there would be no
tunneling and no diffractive reflection from the barrier; thus
κ(T) may be considered a correction for these effectssfor
simplicity it is often called a tunneling correction. Note that
even if one neglects recrossing, it is important to include
the nonseparability of the reaction coordinate at the quantal
level; thusκ(T) should be multidimensional. In the rest of
this section, we consider further the factors in eq 2.4.93,
starting withΓ(T) and then consideringκ(T) andg(T).

The thermal rate constants derived so far in this review
are based on the fundamental assumption of TST, namely,
that there is a dynamical bottleneck located at the transition
state (conventional TST) or at a generalized transition state
obtained by a canonical (CVT) or microcanonical (µVT)
criterion, respectively. In the latter cases, the dividing surface
is optimized variationally to minimize the recrossing. Placing
the transition state at the location that maximizes the free
energy of activation (see eq 2.4.36) is equivalent to minimiz-
ing recrossing and therefore to maximizingΓ. This perspec-
tive on VTST was first proposed by Evans,490 and it provides
a key conceptual framework for modern variational transition
state theory.491 However, we still may have some classical
recrossing at the location of the best variational transition
state because we do not allow the transition state dividing
surface to be completely optimized as an arbitrary function
of coordinates. In fact, as long as we continue to assume
that classical mechanics is applicable, we could in principle
make the dividing surface more and more general, until it
depends on all coordinates and all momenta, which would
eventually allow us to totally eliminate recrossing. This is
not really an option once we quantize the vibrations within
the dividing surface because practical (which usually means
separablesat least until we get to Section 2.5) approxima-
tions to the quantized energy levels are valid only for simple
dividing surfaces, and thus some recrossing remains. Al-
though practical experience for simple barrier reactions has
shown that recrossing effects can usually be made small even
with very manageable prescriptions (such as hyperplanes in
coordinate space) for the dividing surface, there are ap-
proaches, like the unified statistical model492,493 (US), the
canonical unified statistical model383,494 (CUS), and the
unified dynamical model383,495-497 (UD), that can be used to
account for the recrossing that remains after the variational
transition state has been optimized within some set of
necessarily restricted choices for the dividing surface.

The US492,493and CUS383,494models have been proposed
to describe reactions with more than one bottleneck. The
thermal rate constant for this model is given by494

where

andΓUS(E) is the US recrossing factor defined as493

γ(T) ) g(T)Γ(T)κ(T) (2.4.93)

kUS(T) )
Qel

GT(T)

âhΦR(T)
∫0

∞
Nvr

US(E) exp(-âE)âdE (2.4.94)

Nvr
US(E) ) Nvr

µVT(E)ΓUS(E) (2.4.95)
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whereNvr
min(E) is the second lowest minimum ofNvr

GT(E, s)
andNvr

max(E) is the maximum ofNvr
GT(E, s) that lies between

the two minima. It should be noticed that the US calculation
is nonvariational, although it always satisfies thatkUS(T) e
kµ

VT(T). The same analysis can be applied to a canonical
ensemble by defining canonical probabilities in terms of
canonical-ensemble averages of the flux through these
surfaces.494 The resulting canonical unified statistical (CUS)
thermal rate constant assumes the form

with ΓCUS(T) being the CUS recrossing factor.
The CUS result can yield a reduction in the rate coefficient

of no more than a factor of 2 relative to the minimum of the
VTST treatments of the two individual bottlenecks. In
contrast, at the microcanonical level there is no such limit
on the magnitude of the effect of the unified statistical
treatment. Indeed, in a recent treatment of the addition of
OH to C2H4, the unified statistical treatment yielded a
reduction by more than a factor of 10.498 However, the CUS
and US methods, although nonvariational, may be more
accurate that CVT andµVT methods when the reaction has
several bottlenecks. An example is the VTST study of the
H + O3 f HO + O2 reaction carried out by Ferna´ndez-
Ramos and Varandas499 using a DMBE potential energy
surface for the dynamics calculations. The reaction has a
very low barrier and two dynamical bottlenecks near to the
transition state structure. TheµVT and US rate constants
were compared with QCT calculations in the temperatures
interval 100-700 K. TheµVT values were about a factor
of 2 larger than the QCT ones, whereas the US ones are
only about 1.4 times larger than the QCT calculations, as
can be seen in Figure 3.

When there are both consecutive and competitive dynami-
cal bottlenecks, one may use the competitive canonical
unified statistical (CCUS) model.413,500,501

Whereas the US and CUS models involve statistical
estimates of recrossing probabilities, it is also possible to
use trajectories for this purpose. Keck502,503and Anderson504-506

showed how trajectories can be used to calculate a correction
for the breakdown of the TST assumption in a classical
mechanical context. In fact, this is a convenient way to do
trajectory calculations for gas-phase reaction processes

because it involves starting the trajectories at the transition
state, which is a form of rare event sampling and is very
efficient. A quantized version of this approach is called the
unified dynamical (UD) theory. In the UD model the
recrossing corrections to VTST are evaluated from trajec-
tories beginning at a quantized variational transition
state.383,495-497 The short-time dynamics in the vicinity of a
localized dynamical bottleneck determines the rate. A key
source of potential error in this approach is that even though
the trajectories are quantized at the variational transition state,
classical mechanical dynamics does not preserve this quan-
tization as they evolve in time.

In eq 2.4.45, the VTST thermal rate constants include the
quantization of vibrations orthogonal to the reaction path by
using quantum instead of classical partition functions. But
with κ ) 1, the reaction coordinate is still treated classically,
and therefore tunneling is neglected. One way of correcting
this deficiency is to include a multiplicative transmission
coefficientκX/Y such that the resulting rate constant is given
by

whereX indicates the variational method used (CVT, ICVT,
or µVT), andY indicates the approach used to treat tunneling.
In the case of conventional TST we have

One of the first and simplest methods of calculating
tunneling in conventional TST is by using the semiclassical
Wigner correction, which involves an expansion inp and is
given by:507

whereω‡ is the imaginary frequency at the transition state.
This correction is very approximate since it represents trun-
cating a power series inp after the first two terms; it should
not be used whenκ‡,W is >̃ 1.2. Furthermore, even then, it
is only valid when the contributions due to tunneling come
only from the transition state region and the potential around
it can be well approximated by an inverted parabola. At the
same time, the reaction path curvature has to be negligible.

A better approximation, even when the reaction path
curvature is neglected, is to assume that the bound degrees
of freedom follow the reaction coordinate adiabatically and
we can treat tunneling along the reaction coordinate by
calculating the probability of penetration through a 1D
potential with an effective reduced mass. This assumption
is equivalent to treating the reaction coordinate as a slow
motion with respect to the bound degrees of freedom,362,371,508

which is reasonable when reaction-coordinate motion cor-
responds to a threshold. Specifically, the potential along the
reaction coordinate would be given by

where

A further approximation would be to assume that at low
temperatures the system is in its ground state and so the
potential governing the motion along the reaction coordinate
is the ground-state vibrationally adiabatic potential,Va

G(s),

ΓUS(E) ) 1 +
Nvr

µ VT(E)

Nvr
min(E)

-
Nvr

µVT(E)

Nvr
max(E)

(2.4.96)

kCUS(T) ) kCVT(T)ΓCUS(T) (2.4.97)

Figure 3. Arrhenius plot comparingµVT, US, and QCT methods
for the H + O3 f OH + O2 reaction.

kX/Y(T) ) κ
X/Y(T)kX(T) (2.4.98)

k‡/Y(T) ) κ
‡/Y(T)k‡(T) (2.4.99)

κ
‡,W(T) ) 1 + 1

24
|pω‡â|2 (2.4.100)

Va(n,J,s) ) VMEP(s) + Eint
GT(n,J,s) (2.4.101)

Eint
GT(n,J,s) ) Evib

GT(n,s) + Erot
GT(J,s) (2.4.102)
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which is given by eq 2.4.58. A justification for this ground-
state approximation is postponed until Section 3.1. The
ground-state transmission coefficient is given by the ratio
of the thermally averaged ground-state quantal transmission
probability PG(E) to the thermally averaged ground-state
transmission probability evaluated with the assumption of
classical reaction coordinate motion,PC

G(E):401,491

In the case of the CVT, the classical transmission probability
is approximated by

whereVa
G(s) was defined in eq 2.4.58.

The transmission coefficient for the CVT thermal rate
constant400 is readily obtained by substituting eq 2.4.101 into
eq 2.4.103, yielding

For the ICVT andµVT the classical transmission probability
is383

whereVAG is the maximum of the ground-state vibrationally
adiabatic potential, and the substitution into eq 2.4.103 yields,
for instance, forµVT, the following transmission coefficients:

The ratio in the above equation accounts for the different
thresholds in ICVT andµVT as compared to CVT.

In practical work, the transmission probability is evaluated
semiclassically, which is known to yield results within∼15%
of the accurate quantal values.400,509,510The theory takes its
simplest form when the curvature of the reaction path is
small390,511 because under that condition it is a good ap-
proximation to assume that motion is vibrationally adiabatic
along the entire tunneling path. Then the effective barrier
for ground-state tunneling is given byVa

G(s), the maximum
value of which is calledVa

AG or VAG. The semiclassical
probability for energies belowVAG is given by

whereθ(E) is the imaginary-action integral

which is 2π times the magnitude of the imaginary action
integral between the classical turning pointss< (reactants
side) ands> (products side) of the effective potential.

To carry out the Boltzmann average, one also needs to
evaluate the tunneling probability at energiesE > VAG to
incorporate nonclassical reflection. If the potentialVa

G is
assumed parabolic around its maximum, the semiclassical

probability can be approximated for energies above but near
VAG by512

where∆E ) E - VAG. The presence of the Boltzmann factor
in eq 2.4.103 allows one to use eq 2.4.110 well above the
barrier, and therefore the semiclassical probability in the
whole range of energies is given by

where

When the transmission coefficient is calculated along the
MEP with eq 2.4.103 and the probabilities of eq 2.4.111,
but in absence of reaction path curvature, the result400 is
called the zero-curvature tunneling (ZCT) transmission
coefficient.

A more accurate way of treating tunneling is to include
the reaction-path curvature, which is physically meaningful
if computed in an isoinertial coordinate system such as used
in this review. Letx(s) denote the geometry in isoinertial
coordinates at a point that is located at a distances along
the MEP. The curvature vectorκ(s) of the reaction path at
this geometry is given by the second derivative of the
geometryx(s) with respect tos, i.e.,

The reaction path curvature may be calculated by formulas
given elsewhere.387,390For a bimolecular reaction of the type
A + BC f AB + C, where A, B, and C may be atoms or
groups of atoms, we define the skew angle as the angle
between the A-to-BC vector and the C-to-AB vector. This
angle (in isoinertial coordinates) is given by

The skew angle is related to the reaction-path curvature by185

where xR and xP are the geometries in the reactant and
product valleys, respectively.

From eq 2.4.114, it is clear that the skew angle lies in the
range 0< â < π/2, and thus the absolute value of eq 2.4.115
is between one and two. Thus, small skew angles and
therefore large curvature occur whenmB is much smaller
than mA and mC. Marcus and Coltrin513 optimized the
tunneling path for a collinear atom-diatom reaction semi-
classically and found that reaction path curvature leads to a
negative centrifugal effect, i.e., the particle “cuts the corner”
and moves toward the inside of the MEP. This motion

κ
X/G(T) )

∫0

∞
PG(E) exp(-âE)dE

∫0

∞
PC

G(E) exp(-âE)dE
(2.4.103)

PC
G(E) ) Θ{E - Va

G[s*
CVT(T)]} (2.4.104)

κ
CVT/G(T) ) â exp{âVa

G[s*
CVT(T)]}∫0

∞
PG(E) exp(-âE)dE

(2.4.105)

PC
G(E) ) Θ{E - VAG} (2.4.106)

κ
µVT/G(T) ) κ

CVT/G(T)
exp{âVa

G[s*
CVT(T)]}

exp(-âVAG)
(2.4.107)

PSAG(E) ) {1 + exp[2θ(E)]}-1 (2.4.108)

θ(E) ) p-1∫s<

s>{2µ[Va
G(s) - E]}1/2ds (2.4.109)

PSAG(VAG + ∆E) = 1 - PSAG(VAG - ∆E) (2.4.110)

PSAG(E) ) {0,
{1 + exp[2θ(E)]}-1

1 - PSAG(2VAG - E)
1,

E < E0

E0 e E e VAG

VAG e E e 2VAG - E0

2VAG - E0 < E

(2.4.111)

E0 ) max{Va
G(s ) - ∞)
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G(s ) + ∞)

(2.4.112)

κ(s) ) d2x/ds2 (2.4.113)
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shortens the tunneling paths thereby increasing the tunneling
probability.

If the curvature is small, it is possible to treat this effect
of the reaction path curvature by using an effective mass
for the reaction-path motion. Specifically, this effective mass
is a function of the reaction path curvature.360,511,514The final
version of this approach401,402,515is called the small-curvature
tunneling (SCT) approximation, and the effective mass is
given by

where th(s) is a suitably averaged value of the mass-scaled
normal coordinateum at the zero-point-energy turning point
of modem on the concave side of the MEP, andaj(s) is a
suitably averaged value of

whereκm(s) is the component of the reaction-path curvature
vectorκ(s) in the direction of modem. Note that the corner
cutting due to the negative centrifugal effect raises the
tunneling probability, contrary to earlier516 assumptions. This
is because the path is shortened but not enough to raise the
effective potential for tunneling. If one cuts the corner in
any mode by more than the distance to the vibrational turning
point, this would not be true.

The SCT approximation breaks down when the reaction
path curvature is large, and corner cutting is so severe as to
raise the effective potential or cause the breakdown of the
s,u1,u2,... coordinate system. When corner cutting is severe
the SCT approximation can seriously underestimate the
tunneling probability. The large curvature tunneling (LCT)
methods383,401,402,517-524 were developed to evaluate transmis-
sion factors for these types of reactions. In these methods, a
series of tunneling energiesEtun are considered with values
less than or equal toVAG. During the approach stage of a
given collision, the reactants are treated as if they proceed
vibrationally adiabatically. This is not correct if one is
concerned with state-to-state reactivity, but it does not cause
significant error in the cumulative reaction probability. This
vibrationally adiabatic treatment is applied along the MEP
in the exoergic direction until the tunneling energy matches
the vibrationally adiabatic potential curve, that is,

wheres̃0 < 0 is the classical turning points of the reaction-
coordinate motion on the reactant side. In the next stage of
the collisions tunneling is assumed to occur, without assum-
ing vibrational adiabaticity, along the reaction path and along
straight-line paths that connect the reactants valley turning
point to a products valley turning point. Specifically, the
linear paths connect the points̃0 on the reactant side to a
point (s̃1 > 0) with an identical value of eq 2.4.118 on the
product side.

The primitive tunneling amplitudeTtun(s̃0) along the
straight tunneling path initiating ats̃0 is approximated
semiclassically as

in which θ(s̃0) is the 1D imaginary action integral along the
path and is given by an imaginary action integral over the

straight-line path. The integral is divided into three parts that
correspond to three different regions along the straight
tunneling path. Region I corresponds to an adiabatic region
where the information needed to evaluate the imaginary
action integral can be extrapolated from information along
the MEP in the reactant valley, Region III is similarly related
to the product valley. Region II corresponds to a nonadiabatic
region and the contributions to the imaginary-action integral
from this region are calculated from the actual potential at a
point on the tunneling path (without any quadratic potential
approximation) and from correction potentialsVcorr that take
into account the zero-point energy of the modes that are still
within their turning points at the boundaries of Region II.
Version 4 of the LCT method, also called the LCG4
method,402,523uses more stringent requirements than version
3 (also called LCG3) for a point to be considered in the
vibrationally adiabatic region. The LCG4 transmission factors
are always smaller than or equal to the LCG3 transmission
factors. Although the LCG4 method is currently recom-
mended as the default large-curvature tunneling method, it
is not always more accurate than LCG3.525

The final result includes tunneling into a set of states in
which a vibrationally diabatic mode of the products is
excited,401,402and the tunneling probability is appropriately
uniformized.401,402,521

Figure 4 shows the different kinds of tunneling paths to
illustrate the above discussion.

Liu et al.522 applied the LCG3 method to the CF3 + CD3H
f CF3H + CD3 and CF3 + CD3H f CF3D + CD2H
reactions. (A later study with a more accurate potential
function found less tunneling for this reaction.524) They found
that for these systems the reaction occurs mainly through
large-curvature tunneling paths with a small contribution
(around 1%) of tunneling into vibrationally excited states of
the products. It is interesting to notice that for evaluating
kinetic isotope effects the representative tunneling path (the
dominant path at the energy at which the integrand of the
numerator of eq 2.4.103 has a maximum) may be close to a
large-curvature tunneling path when the hydrogen is trans-

µ(s) ) µ∏
m)1

F-1

min{exp{-2aj(s) - [aj(s)]2 + (dth/ds)2}
1

(2.4.116)

am(s) ) - κm(s)tm(s) (2.4.117)

Va
G(s̃0) ) Etun (2.4.118)

Ttun(s̃0) ) exp[-θ(s̃0)] (2.4.119)

Figure 4. Contour plot of a model bimolecular reaction that
indicates the possible tunneling paths at a given tunneling energy
as discussed in Section 2.4.4. MEP is the minimum-energy path,
SCP is a schematic small-curvature tunneling path (actually, the
SCT approximation does not correspond to a uniquely defined path),
LCP is a large-curvature tunneling path, and LAP is a least-
imaginary-action path.
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ferred but to a small-curvature tunneling path when the
transferred atom is deuterium. Furthermore, even for a given
isotope, the type of tunneling path that gives the most
tunneling may depend on energy. To take account of this
possibility a new approximation for the transmission factor,
called microcanonical optimized multidimensional tunneling
or µOMT, was introduced.522 This transmission factor is
obtained at every energy by taking the maximum of the SCT
and LCT tunneling probabilities, i.e.,

In principle the “most accurate” transmission factor would
be obtained, at every energy, by finding the path that
minimizes the imaginary action integral.518 This least-action
path would be a compromise between the energetically most
favorable path along the MEP and the energetically less
favorable but shortest path, which is included in the LCT
calculations. The evaluation of the least-action path involves
a search that can be computationally expensive. TheµOMT
transmission factors are less computationally intensive, and
it has been shown by an extensive comparison with accurate
quantum chemical thermal rate constant calculations for
atom-diatom reactions526 that they are accurate enough
for almost all practical work, although a recent study525

showed that sometimes the full least-action method is more
accurate.

Recently, it has been possible to extend these tests of the
µOMT tunneling approximation to reactions of larger
molecules by comparing to calculations52,527,528that provide
numerically converged quantum dynamical rate constants for
a given potential energy surface. TheµOMT results are in
excellent agreement with the quantum ones for H+ CH4 f
H2 + CH3, which has a skew angle ofâ ) 47 deg and is
dominated by small-curvature tunneling,529,530 and in good
agreement for O+ CH4, which hasâ ) 20 deg and for which
tunneling is better taken into account by the large-curvature
approximation.531

A tunneling mechanism not included in the above discus-
sions is tunneling enhanced by resonances below the qua-
siclassical threshold energy; this subject has received con-
siderable recent attention.532-542

Next we turn attention to the factorg(T) in eq 2.4.93. In
TST it is assumed that the observed one-way rate constants
should be well approximated by the one-way rate constants
corresponding to internal states of reactants being at equi-
librium. By Liouville’s theorem, if reactants have an equi-
librium distribution then this distribution should evolve to
an equilibrium distribution in other parts of the phase
space,543 such as, for instance, the transition state, and the
“quasiequilibrium assumption” of the TST holds. Actually,
for gas-phase bimolecular reactions the TST provides an
upper bound to the observed rate constant if collisions are
efficient enough to maintain the thermal distribution of
reactants. A quantitative estimate of the effect of internal-
state (rotational and vibrational) nonequilibrium on the rate
constants for the fast, bimolecular, reversible hydrogen-
transfer reaction

was carried out by Lim and Truhlar.544 Those authors found
out that nonequilibrium effects for this reaction are negligible
when product concentrations are negligible. This conforms

to the usual assumption, but it does not exclude the possibility
that nonequilibrium effects could be more important for other
possible assumptions about the state-to-state reaction prob-
abilities and energy transfer probabilities. Nevertheless, it
is reasonable to assume that the local equilibrium of reactants
is maintained for the case of simple barrier reactions that do
not proceed on every collision.

In analyzing experimental data, some workers set the
experimental rate constant equal to eq 2.4.35 without a
transmission coefficient. This produces a phenomenological
free energy of activation with two kinds of contributions:
the quasithermodynamic contribution of eq 2.4.35 and
another contribution called nonsubstantial.382,489,545The qua-
sithermodynamic part is related to partition functions by
quasithermodynamic generalizations of the equations for
chemical substances and, as may be derived from the
quasiclassical analogues of eqs 2.4.34-2.4.36, it may be
written

where the nonsubstantial part may be written

2.4.5. Improvements in VTST Methodology
In this section, we consider two kinds of improve-

ments:402 (1) more general dividing surfaces based on
curvilinear coordinates or optimizing the orientation of the
dividing surface, and (2) interpolation schemes that improve
the computational efficiency of the method.

In Section 2.4.2, we assumed a planar (hyperplanar)
dividing surface, but in many respects this is unsatisfactory.
First of all, a hyperplane in coordinate space does not always
separate reactants from products, even if it intersects the MEP
at a right angle. This usually does not cause a problem though
if we use physically correct models for partition functions,
such as the harmonic oscillator model or the Morse
model.365,429

A more serious problem is the nonphysical nature of the
vibrational frequencies for planar dividing surfaces.546 This
can be circumvented by using curvilinear coordinates defined
in terms of valence coordinates (bond stretches, bends, and
torsions) to define the dividing surface.465,546-549 This yields
more physical harmonic frequencies and is therefore often
more important than including anharmonicity. Recently, in
a very significant advance, a procedure has been developed
for also including anharmonicity when using such curvilinear
coordinates.465

A third problem when using curvilinear reaction coordi-
nates (and hence curved dividing surfaces) is that equations
such as 2.4.25, 2.4.28, 2.4.31, 2.4.34, and 2.4.35 are no longer
strictly valid. One must also include a Jacobian factor to
account for the curved nature of the dividing surface.378-381

For dividing surfaces defined in terms of valence coordinates,
the factor is reasonably close to unity.378,381

VTST is much less time-consuming than trajectory
calculations, and, when tunneling is included, it is usually
more accurate. However, VTST calculations (like trajectory
calculations) can still be expensive if the system under study
is big, since VTST requires the evaluation of gradients and
Hessians at more than just stationary points (whereas
trajectory calculations require extensive sampling of initial

PµOMT(E) ) max{PLCT(E)

PSCT(E)
(2.4.120)

Cl + HBr a ClH + Br

∆Gsub
‡ (T) ) VMEP(s*

CVT) - RT ln
QCVT(T)

ΦR(T)K‡,o
(2.4.121)

∆Gnonsub
‡ (T) ) -RT lnγ(T) (2.4.122)
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conditions and long time integrations). Several techniques
have been developed in the past few years to reduce the
number of electronic structure calculations needed for VTST
and tunneling calculations without loss of accuracy.

One technique involves the reorientation of the dividing
surface (RODS) to maximize the free energy at each
calculated point. The RODS algorithm388 considers trial
dividing surfaces that are hyperplanes inx and that pass
through a point on a reaction path, which need not be a
converged MEP. The orientation of the dividing surface (with
normal vectorn̂) is optimized to maximize the free energy
of the generalized transition state at a given point along the
MEP. The standard-state optimized generalized free energy
(corresponding to optimized generalized transition state
theory or OGT) value is given by

This algorithm can be combined with the traditional Euler
steepest-descent algorithm to calculate accurate and compu-
tationally efficient VTST rate constants using large step
sizes.389 Although in principle this algorithm should give
more accurate results because of the greater degree of optimi-
zation of the dividing surface, the main effect is actually to
eliminate instabilities in the calculated reaction path and
generalized normal-mode frequencies and to allow efficient
calculations with larger step sizes. At low temperatures this
procedure leads to rate constants converged to∼15% with
a step size of around 0.05a0, whereas at high temperatures
a step size of around 0.15a0 is enough to get rate constants
with the same degree of precision as the full calculation.

Another possibility is to use an interpolating function over
a given number of points along the MEP. One approach,
called interpolated variational transition state theory by
mapping (IVTST-M),550 interpolates the potentialVMEP(s),
the determinant|I(s)| of the moment of inertia tensor, the
frequenciesωm(s), and the curvature componentsBm,F(s) not
as functions ofs but as functions ofz, wherez is a new
variable that always has a finite value (in a bimolecular
reactions has infinite values (- ∞ and+ ∞) at the reactants
and the products). The parameterz is determined as

with s0 and L being two parameters obtained from the
forward and reverse barrier heights. The newVMEP(z), |I(z)|,
ωm(z), andBm,F(z) functions are interpolated by using splines
under tension.

Instead of using functions to interpolate the calculated
electronic structure points it may be better to interpolate them
with a MEP obtained from low-level electronic structure
calculations. One method based on this dual-level approach
is variational transition state theory with interpolated cor-
rections (VTST-IC).551-554 In this method, correction pro-
cedures are applied to the calculated energy, frequencies,
and moment-of-inertia determinant along the MEP. The
corrections are calibrated such that the corrected results
match the accurate values at those selected points, and they
correspond to interpolating these corrections at other points.
When the corrections involve data from higher-level opti-
mizations of the stationary points, the method is called
VTST-IOC,554 a special case of VTST with interpolated
corrections. This method is based on the correction at three

points, in particular, the saddle point and two stationary
points, one on each side of the MEP. If corrections were
made at nonstationary points, they would be based on
reaction paths calculated at the higher level. The interpolated
optimized energies (IOE) approach is a particular case of
IOC in which only the energies and moment-of-inertia
determinants are corrected, but the corrected energies are
based on geometries optimized at the higher level. Finally,
if the correction is based on single-point energies using
higher-level electronic structure calculations, the method is
called VTST-ISPE (VTST with interpolated single-point
energies). Gonza´lez-Garcı´a et al.555 used the ISPE dual-level
methodology to study the dimethyl sulfoxide reaction with
OH. This important reaction in atmospheric chemistry has
three possible products. The global rate was obtained by
applying the CCUS theory.413 The CUS theory383,494,556,557

was employed to calculate the thermal rate constants for
individual reactions because the free energy profile shows
several dynamic bottlenecks.

Of all the methods that allow greater efficiency, probably
the most promising is the MCMM method210,214,241described
in Section 2.3, because it accurately reproduces the stationary
points, it can be used with large steps, and it can be improved
by adding more points to the MEP until one obtains
convergence in the calculated thermal rate.

It is also possible to use interpolation methods to evaluate
the large curvature transmission factors. In computer time,
the most expensive part of the evaluation of this kind of
transmission factor is the calculation of energies in the
nonadiabatic region, because single-point energy calculations
are needed to evaluate the imaginary action integral. The
computer time can be reduced by using a spline under tension
to interpolate the linear path within the nonadiabatic region.
This algorithm is called interpolated large curvature tunneling
in one dimension (ILCT1D).558 Tests carried out on five
bimolecular reactions indicated that the ILCT1D algorithm
reduces the evaluations of the LCT transmission factors by
about five times, with results similar to the full calculations.
An even less expensive algorithm (in computer time)
involves using 2D interpolation to interpolate not only along
the linear path variableê, but also along different tun-
neling energies. The calculated points are interpolated by
a 2D spline under tension. This method524 is called
ILCT2D. It has been tested for several CF3+ hydrocarbon
reactions and is about 30 times faster than the full LCT
algorithm and about 5 times faster than the ILCT1D method
with an average deviation from the full LCT results of less
than 1%.

2.4.6. Reduced-Dimensionality Theory

Variational transition state theory may be derived by
assuming that vibrations transverse to the reaction coordinate
are adiabatic,365,429,559although it is not necessary to assume
vibrational adiabaticity to derive VTST. Hofacker was the
first to make a detailed study of the vibrational adiabaticity
and nonadiabaticity of the modes transverse to a reaction
coordinate;560 Wu and Marcus continued this work.561 Since
then the concept has been widely invoked. Assuming a
quantitative requirement for zero point energy of stretch562,563

and bend563 vibrations can be quite accurate in the threshold
region that controls thermal bimolecular rate constants.
However, stretch vibrations are only approximately adiabatic
in a global sense, even when the reaction appears to be vibra-
tionally adiabatic in terms of initial and final states516,563,564

GOGT,0(T) ) max
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and bending vibrations are more complicated; the latter show
propensities (but not strict selection rules) to couple to
selected asymptotic rotational quantum numbers.516,565-567

Based in part on their success in transition state theory,
vibrational adiabaticity and the separable rotation approxima-
tion are sometimes used to reduce the dimensionality in non-
TST calculations. Several combinations of these and other
approximations, including also sudden approximations, that
reduce the dimensionality of reactive collisions have been
developed.46,213,231,234,237,245,257,568-599 Clary and co-workers
have developed general reduced-dimensionality methods for
atom-molecule reactions that treat the dynamics in 2 or 3
active degrees of freedom and assume vibrational adiabaticity
with no curvature coupling to the active degrees for the other
degrees of freedom.213,231,234,245,257,591,592,594,597,599Although it
is an advantage to use full quantum mechanics rather than
semiclassical approximations in the active degrees of free-
dom, the neglect of curvature coupling in all but a few
degrees of freedom may make the tunneling calculations less
accurate than the SCT and LCT approximations, with which
direct dynamics calculations have been applied to systems
of similar size as those in the reduced-dimensionality
calculations and also to larger systems (see Section 2.4.7).
A convenient advantage of VTST/MT over reduced-
dimensionality approximations is that the same formalism
can be applied to different kinds of reactions, e.g., both H
+ C2H4 f C2H5 and H+ C2H6 f H2 + C2H5. Nevertheless,
the reduced-dimensionality method of Clary and co-workers
is a major advance in systematic methodology for dimen-
sionality reduction, and it can also be applied to certain state-
selected processes.

2.4.7. Direct Dynamics Calculations

Direct dynamics with VTST/MT has now become a widely
used method for calculating rate constants of bimolec-
ular reactions in the gas phase without dimensionality
reduction. Although the present review is mainly con-
cerned with methodology, and not with complete lists of
applications, Table 4 provides some prototype ex-
amples162,164,210,214,235,522,523,549,551,600-650 of applications of
VTST/MT to reactions with rate-limiting potential energy
barriers.

2.4.8. Fully Quantal Calculations

In addition to the approximate calculations discussed so
far, one may also calculate rate constants by converged
quantum mechanical scattering theory or converged quantum
statistical mechanics.44,45,48 These results are exact within
some numerical tolerance for a given PES, although usually
only for total angular momentum equal to zero; contributions
to the rate constant from higher total angular momenta can
be obtained by the separable rotation approximation.651 So
far such calculations have been limited to systems with six
or less atoms. We especially call attention to prototype
calculations for H+ H2 f H2 + H,53,652-654 D + H2 f DH
+ H,655,656Cl + H2 f HCl + H,657 O + HD f OH + D
and OD+ H,658 OH + H2 f H2O + H,57,659-661 H + CH4

f H2 + CH3,662,663and O+ CH4 f OH + CH3.664

Even with modern computer capabilities, direct calculation
of enough state-selected reaction probabilities or rate con-
stants to compute a thermal rate constant by Boltzmann
averaging over reactant states is very expensive for four or
more atoms, especially with two or more nonhydrogen atoms,
as illustrated in a recent paper on the OH+ CO f H +

CO2 reaction.665 Therefore, the calculation of rate con-
stants from the cumulative reaction probability or the flux
autocorrelation functions is preferred for larger sys-
tems.54,56,57,659,662-664,666-671

The time correlation function approach is well suited not
only to gas-phase reactions54-57,652,654,655,658,666-671 but also

Table 4. Prototype Applications of VTST/MT to Gas-Phase
Bimolecular Reactions

MT
method reaction ref

ZCT OH + CH3CH2F f CH3CHF + H2O 603
SCT H+ SiCl4 f SiCl3 +HCl 622

H + C2H4 f C2H5 612
H + C2H5SiH2 f C2H5SiH + H 633
H + NF3 f NF2 + HF 616
H + (CH3)3GeHf (CH3)2Ge+ H2 626
H + (CH3)3GeDf (CH3)2Ge+ HD 625
H + (CH3CH2)2SiH2 f (CH3CH2)2SiH + H2 636
O + CH3CHF2 f CH3CF2 + OH 638
Cl + CH3Cl f CH2Cl + HCl 647
Cl + C2H5Cl f CH3CHCl + H′Cl 649
Cl- + CH3f ClCH3 + Cl′- 164
Cl- + CH3Br f ClCH3 + Br- 600
OH + HCl f C1 + H2O 602
OH + D2O f OD + HDO 610
OH + CD4 f CD3 + HDO 628
OH + 13CH4 f 13CH3 + H2O 642
OH + CH3Cl f CH2Cl + H2O 647
OH + CH3SH f CH3S + H2O 631
OH + CH3OCl f CH2OCl + H2O 644
OH + CH3C(O)CH3 f (CH3)2C(O)OH 627
OH + (CH3)2SiH2 f (CH3)2SiH + H2O 645
OH + HOCH2C(O)H f HOCH2CO + H2O 640, 643
OH + (cyclo-C3H5)CH(CH3)2 f

(cyclo-C3H5)C(CH3)2 + H2O
648

HF + H2SiLiF f H3SiF + LiF 646
C2H + H2 f H + C2H2 614
NO2 + CH2O f CHO + HONO 629
CH3 + H2 f H + CH4 162
CH3 + CH2O f CHO + CH4 635
CH3 + (CH3)2O f CH3OCH2 + CH4 630
CH3 + C2H5OH f CH3CHOH + CH4 639
CH3Cl(H2O) + NH3(H2O) f

(CH3NH3
+)(Cl-)(H2O)2

605

C6H5 + (CH3)2CO f CH3C(O)CH2 + C6H6 632
OMT H + H2S f HS + H2 615

H + CH4 f CH3 + H2 624
H + CH3OH f CH2OH + H2 611
H + N2H4 f H2NNH + H2 549
O + CD4 f CD3 + OD 607
F + CH4 f CH3 + HF 641a

Cl + 13CH4 f 13CH3 + HCl 606
Cl + C2H6 f C2H5 + HCl 403
OH + H2 f H + H2O 623a

OH + NH3 f NH2 + H2O 601
OH + CH3F f CH2F + H2O 608
OH + CH2F2 f CHF2 + H2O 621
OH + CF3CH3 f CF3CH2 + H2O 618
OH + C3H8 f (CH3)2CH + H2O 212
OH + CHF3 f CF3 + H2O 619
OH + C8H18 f C8H17 + H2O 613
HBr + HCCH f H2CCHBr 604
C2H + H2 f C2H2 + H 614
CH2Cl + CH3F f CH2F + CH3Cl 210
FO-(H2O) + C2H5Cl f

C2H4 + HOF(H2O) + Cl-
609

CF3 + CD3H f CD3 + CHF3 522, 524, 551
CF3 + C2H6 f C2H5 + CHF3 524
CF3 + C3H8 f (CH3)2CH + CHF3 524
C2H4 + C4H6 f C6H10 620
N2O5 + H2O f 2HNO3 634
OH + CHF3 f CF3 + H2O 650

a See also an SCT calculation in ref 23.
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to condensed-phase dynamics,308,672-694 as discussed in
Section 4.1.

As discussed in Section 2.4.4, for H+ CH4 and O +
CH4, VTST/MT calculations are in good agreement with
converged quantal ones where the same PES is
used.529-530,664

2.5. Bimolecular Reactions over Potential Wells
Bimolecular reactions come in a number of different

varieties, as illustrated in Figure 5. The simplest case is

shown in Figure 5a, where only a simple barrier separates a
set of bimolecular products from a set of bimolecular
reactants. For such reactions, which have been the sole
subject of our discussion up to this point, the rate coefficient
is a strong function of the temperature but does not depend
on the pressure. However, a common occurrence is that one
or more potential wells lie along the reaction path, and this
introduces a number of complications in the theoretical
analysis. In the presence of a well the reactants can form a
long-lived collision complex, which can survive long enough
to suffer a number of collisions before it decomposes back
into reactants or into products, perhaps resulting instead in
stabilization of the complex in the well. The simplest such
situation is shown in Figure 5b, where the complex has only
the options of reforming reactants or being stabilized. Simple
models for the association rate were discussed in Section
2.2.2 of this review, but such reactions are normally treated
as the reverse reactions of unimolecular decompositions. For
these and more complex reactions, the rate coefficient is a
function of both temperature and pressure (or temperature
and number density).

The next level of complication involves adding a bimo-
lecular product channel to the association reaction just
described, shown in Figure 5c. In this case the collision
complex can have one of three fates: stabilization, dissocia-
tion back to reactants, or dissociation to bimolecular products.
Recently studied examples with reaction profiles of the form
of Figure 5c are F- + (CH3)2SO695 and O+ OH696,697 for
the case without potential energy barriers and SiH2 + HCl698

for the case with barriers. The most general case one can
imagine is illustrated in Figure 5d; it includes the possibility
of the complex isomerizing to another complex (perhaps
multiple times) before it is stabilized or it decomposes, either
back to reactants or to one of several sets of bimolecular

products. Each intermediate isomer and each bimolecular
reactant or product is called an arrangement or a configu-
ration, and each interconversion between two arrangements
is called an elementary step. This is the case we want to
consider in this section. A recently studied reaction with an
energy profile like Figure 1d is H+ SO2.699 The number of
possible arrangements increases rapidly with the total number
of atoms, but even a five-atom system like HCO+ NO700

can have an energy diagram much more complicated than
Figure 5a. Reactions with both a barrier and wells (inter-
mediates) are particularly interesting,171 and they may show
multimodal lifetime distributions and other manifestations
of nonstatistical behavior,701 but in this section we focus first
on barrierless reactions.

2.5.1. RRKM Assumption

The first step to treating a multiple-well, multiple-
arrangement reaction theoretically is to treat the com-
ponent elementary steps individually. Transition-state theory
is used to calculate the rate coefficients for these steps.
This must be done at the microcanonical or microcanoni-
cal/J-resolved level, whereJ is the total angular momentum
quantum number. A microcanonical/J-resolved ensemble
takes explicit account of the dependence of reaction rates
on total energy or total energy and total angular mo-
mentum. These transformations from one arrangement to
another are, broadly speaking, of two types: those where
there is an “intrinsic” barrier between the configurations and
those where there is not; both possibilities are indicated in
the diagrams of Figure 5. By the term intrinsic barrier, we
mean a potential energy barrier in the exoergic direction.
For isomerizations that have a barrier and for fragmentation
of a complex to a radical plus a molecule in which the reverse
association has a barrier, the transition-state theory methods
discussed above can be used directly. For fragmentation to
a pair of radicals in which the reverse association has no
barrier, special methods are required. We describe these
methods below. But first we consider the basic assumption
that holds the multiple-well, multiple arrangement theory
together.

The fundamental idea that underlies this theory is known
as the RRKM assumption or the strong-coupling approxima-
tion. This is an assumption about the nature of the dynamics
of the collision complexes while they are in the well regions
of the potential. It is most easily described and understood
from a classical (rather than quantum) perspective, although
it may be more valid in a quantum-mechanical system than
in a classical one. The RRKM assumption says that the
degrees of freedom of a highly excited, isolated molecule
or collision complex are so strongly coupled that, no matter
how localized in phase space an ensemble of such complexes
is prepared, the ensemble will evolve to fill the entire phase
space available to ituniformly(consistent with conservation
of energy and angular momentum) on a time scale much
smaller than the characteristic time for reaction (i.e., for an
elementary step). Each step thus takes place exclusively from
a microcanonical/fixed-J ensemble (frequently approximated
simply by a microcanonical ensemble). This is illustrated
schematically in Figure 6. The isolated pockets of complexes
on the left of the figure might correspond to depositing
energy in a particular bond or normal mode of the molecule,
or they might correspond to isolating the complexes near a
transition-state dividing surface through which they were
formed. The subsequent trajectories of the complexes are

Figure 5. Different types of bimolecular reactions. R denotes
reactants; P denotes products.
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“chaotic,” with the ensemble rapidly becoming uniform in
the accessible phase space of a given well.

The RRKM assumption is that the reactant of each
elementary step is in microcanonical equilibrium; therefore,
the same reaction rates result no matter how energy is
deposited in a molecule (or complex). It is thus possible to
define universally applicable elementary rate coefficients
k(E,J), or k(E), and to bypass the problem of computing the
intramolecular dynamics of the complexes entirely. This is
an enormous simplification. A consequence of the ap-
proximation is that an ensemble of complexes will have an
exponential lifetime distribution with a 1/e decay time (or
lifetime) of 1/k(E,J). The classical dynamical implications
of RRKM and non-RRKM behavior have been discussed at
some length by Bunker and Hase702 and Hase,703,704who pay
particular attention to the effects of non-RRKM behavior
on lifetime distributions.

The RRKM assumption is generally very good and is
expected to get better as the depth of the potential well over
which the motion takes place increases. A noteworthy
example of the failure of the RRKM assumption is the
reaction H+ O2 a OH + O, where the high-frequency O-H
vibration does not couple very strongly to the low-frequency
O-O motion in the HO2

* complex.705,706 However, such
failures are likely to be limited to three- or four-atom systems
with similar frequency mismatches. Even a methyl group
often provides enough anharmonicity to promote efficient
intramolecular energy transfer. However, there also appear
to be occasional failures of RRKM theory in dissociations
of larger molecules such as CF3CH3,707 the chemically
activated dissociation of acetone cation,708 and the confor-
mational isomerization of cyclohexanones709 and of a dipep-
tide.710 In any case, we assume that such failures are the
exception rather than the rule.

The combination of the RRKM assumption and transition-
state theory is frequently termed RRKM theory.

2.5.2. Variational Transition State Theory for Barrierless
Addition Reactions

The absence of a potential energy barrier for the initial
association step of a radical-radical or ion-molecule
reaction presents certain complications in the application of
transition state theory. First, a variational implementation of
transition state theory is essential due to the wide variation
in the location of the dynamical bottleneck with temperature.
Furthermore, a number of the modes transform from free
rotations to hindered rotations to librations and eventually
to rigid bending vibrations as the system passes through the
transition state region, and this phenomenon is typically
associated with large vibrational anharmonicity and vibra-
tional Coriolis coupling. Although for a few reactions, such
as CH3 + H, decoupled 1D treatments have proven effec-
tive,711 in other instances, decoupled rigid-rotor harmonic-
oscillator treatments (as presented in Section 2.4.2) are highly
inaccurate.712 Thus, in general, an accurate treatment of the
anharmonicities and the couplings between the various
modes, including the reaction coordinate and overall rotation,
is a prerequisite for reliable predictions.

The absence of a barrier also makes some simplifications
possible. For example, quantum tunneling effects are usually
not important for calculating the thermal rate constant. Also,
in the transition-state region the two reacting fragments are
often interacting only weakly. As a result, an approximate
separation of modes into the “conserved” modes, corre-
sponding to the vibrational modes of the fragments, and the
remaining modes called “transitional” modes, corresponding
to the relative and overall rotational modes, can be used to
simplify the analysis. The reaction coordinate, corresponding
to the relative translational motion of the fragments (i.e., the
interfragment separation) is either considered separately or
as part of the transitional modes. (As usual, the overall
translational modes are ignored since they factor out of the
problem.)

This approximate separation of modes is particularly
valuable in allowing for a classical treatment of the transi-
tional modes, while maintaining a quantum treatment of the
conserved modes. A quantum treatment of the latter modes
is essential due to their generally quite high vibrational
frequencies. In contrast, the low-frequency nature of the
transitional modes implies that treating them purely classi-
cally is acceptable.713 Importantly, the classical treatment of
the transitional modes facilitates the treatment of their
anharmonicities and mode-mode couplings via phase-space
integral descriptions of the partition functions.714

At the canonical level, this assumed separation allows one
to evaluate the transition state partition function as the
product of the conserved mode and transitional mode
partition functions:

In eq 2.5.1, the double dagger superscript denotes evaluation
at the variational transition state, which is where the product
on the right-hand side assumes its minimum value, if we
keep the zero of energy at reactants. Although eq 2.5.1 is
quite useful for calculating the high-pressure limit, the study
of the pressure dependence of the reaction kinetics instead
requires the implementation of transition-state theory at the
microcanonical level or at the microcanonical/J-resolved
level. The transition-state partition function then corresponds
to the number of available (i.e., energetically accessible)

Figure 6. Schematic diagram illustrating RRKM dynamics in
phase space. The timeτR is the characteristic time for reaction to
occur.

Q‡(T) ) Qconserved
‡ (T)Qtransitional

‡ (T) (2.5.1)
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states, which may be obtained by convolving the number of
available states for the transitional modes,Ntransitional, with
the density of states for the conserved modes,Fconserved:

The microcanonical rate coefficient, required for the master
equation analysis of pressure dependent effects (which is
presented below), is given by the standard microcanonical
TST expression, which has the form365

for a bimolecular elementary step, whereφR is the reactant
density of states per unit energy and volume for the reactant,
and the RRKM form715,716

for a unimolecular elementary step, whereFR(E) is the
reactant density of states per unit energy. In both of these
equationsN‡(E) is the number of states of the variational
transition state at energies less than or equal toE. The
microcanonical/J-resolved analogues are

and

where now the numbers and densities of states are restricted
to a particular value ofJ. To keep the presentation manage-
able, we will focus on the bimolecular case and eq 2.5.5,
but similar considerations apply to all four of these equations.

Some aspects of the coupling of the conserved modes to
the remaining modes are sometimes treated in an approximate
fashion. For example, the conserved mode vibrational
frequencies and molecular geometries vary with the reaction
coordinate. When this variation is ignored, the conserved
mode contributions need to be evaluated only for infinitely
separated fragments, rather than separately for each transi-
tion-state dividing surface that is considered in the variational
optimizations. Furthermore, the conserved mode contribution
to the canonical transition-state partition function then cancels
with the corresponding contribution to the reactant partition
function in the evaluation of the high-pressure bimolecular
rate coefficient.

Phase space theory (PST) provides a useful, and easily
implemented, reference theory for barrierless reactions.717-725

The basic assumption in phase space theory is that the
interaction between the two reacting fragments is isotropic
and does not affect the internal fragment motions. This
assumption is only valid if the dynamical bottleneck lies at
large separations where the interacting fragments have free
rotations and unperturbed vibrations. The Gorin model,
discussed in Section 2.2.2, is essentially a canonical version
of phase space theory for anR-6 potential, whereR is the
separation between the centers of mass of the two fragments.

The variableRshould not be confused with the gas constant
R (used above) or the coordinate setR (also used above). In
eq 2.2.17 and the rest of Section 2.2.2,R was calledr;
however, we have changed the notation in this section for
better correspondence with some of the key references of
this section.

The energy for the transitional mode motion on the
transition-state dividing surface is given by the sum of the
effective centrifugal energy and rotational energies for each
of the fragments,Erot(j i,ki), wherej i andki are the rotational
quantum number and its projection on a body-fixed axis for
fragment i. The effective centrifugal potential,Veff(R), is
given by

whereV(R) is the isotropic fragment-fragment interaction
energy,µ is the reduced mass of relative translation, andl
is the orbital angular momentum quantum number.

The assumption of an isotropic interaction implies thatl
is a conserved quantum number and therefore the reactive
flux can be minimized for each separatel value. In PST the
fragment rotational energies are assumed to be independent
of R and l, and conserved-mode energies are assumed
constant forR greater than its value at the transition state
dividing surface. Then the variational minimization reduces
to locating the position of the maximum in the effective
potential, with corresponding effective potential valueEl

‡.
For the most general case of two nonlinear rotors the phase
space theory transitional mode number of states can be
written as

whereΘ denotes a Heaviside step function, and the first two
terms on the right-hand-side denote triangle inequalities, with
j being the angular momentum quantum number correspond-
ing to the vector sum of the fragment rotational angular
momenta.

The PST expression for the number of available states can
also be obtained from an adiabatic-channel perspective where
one considers the number of adiabatic channels whose energy
barrier is below the energyE.726-728 In fact, fully adiabatic
theories, where the channel numbers are labeled only
according to their energy, provide identical rate coefficients
to fully statistical transition state theories.365 Direct sums such
as eq 2.5.8 are readily evaluated computationally, particularly
when one realizes that for higher energies the sums can be
considered as integrals with nonunit step sizes employed in
their evaluation. Alternatively, the quantized formulas can
be replaced with classical phase space integrals, which yields
further simplifications.718,723,724

For ion-molecule reactions long-range expansions of the
potentials often provide an adequate description of the
interactions in the transition state region. As discussed above,
TST treatments for the ion-induced dipole potential yield
the Langevin rate. The ion-dipole interaction is generally
the next most important term in the potential. The locked-
dipole,729,730average dipole orientation,731-734 and effective
potential method735,736provided early approximate treatments
of the effect of the ion-dipole interaction on the capture

N‡(E,J) ) ∫0

E
dεNtransitional

‡ (ε,J)Fconserved
‡ (E - ε) (2.5.2)

k‡(E) )
N‡(E)

hφ
R(E)

(2.5.3)

k‡(E) )
N‡(E)

hFR(E)
(2.5.4)

k‡(E,J) )
N‡(E,J)

hφ
R(E,J)

(2.5.5)

k‡(E,J) )
N‡(E,J)

hFR(E,J)
(2.5.6)

Veff(R) ) V(R) +
p2l(l + 1)

2µR2
(2.5.7)

NPST
transitional(E,J) ) ∑

j1
∑
j2

∑
k1

∑
k2

∑
l

∆(J,j,l)∆(j,j1,j2)

Θ[E - Erot1
(j1,k1) - Erot2

(j2,k2) - El
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rate. These treatments were largely superseded by the
pioneering trajectory simulations of Su and Chesnav-
ich.734,737,738Related rigid body trajectory simulations of the
capture rate for neutral radical-radical reactions have
provided useful indications of the limits of accuracy of
transition state and adiabatic channel model calculations.739-744

Gridelet et al.745 have formulated two criteria for the validity
of arbitrary transition state theory for ion-molecule interac-
tions.

A recent long-range TST746 provides a unified treatment
of reactions on long-range potentials. Agreement with
trajectory simulations is generally very good. For example,
for the particular case of ion-dipole reactions the predictions
agree with the trajectory results to within a few percent. This
long-range TST is applicable for moderately low tempera-
tures, where the temperature is not so low that quantum
effects are significant and not so high that the transition state
has moved in to separations where the long-range potential
expansion is no longer applicable. Related, but more limited,
results had been derived earlier from the perspective of
adiabatic channel theories.747,748

In reality, the interaction potential for radical-radical
reactions is generally quite far from isotropic, and phase
space theory provides only an order of magnitude estimate
for the capture rate. For ion-molecule reactions the increased
strength of the long-range interactions results in a transition
state that lies at quite large interfragment separations, where
the interaction potential tends to be more isotropic, and the
association rate constant of phase space theory is often quite
accurate, unless the molecular reactant is either highly
nonpolar or nonspherical. In the special case of an ion-
induced dipole potential, we can recover the Langevin
expression already discussed in Section 2.2.

Recent studies of the high-pressure limit of the H3O+ -
H2O association reaction indicate that it is not dominated
by ion-dipole forces but rather by the valence part of the
potential.749

The effect of anisotropies in the interaction potential can
readily be accounted for within a classical phase-space
integral description of the number of states. At the canonical
level the classical partition function for the transitional mode
motion on a dividing surface specified by a given value of
the separationR may be written as713

whereΩi denotes the Euler angles (θi,æi,øi) describing the
absolute orientation in space of fragmenti, Ω12 denotes the
spherical polar angles describing the absolute orientation of
the line-of-centers connecting the centers-of-mass of the two
fragments,K is the sum of the fragment and orbital kinetic
energies, andn is the number of transitional mode degrees
of freedom excluding the reaction coordinate. The transition-
state partition function is obtained via minimization of eq
2.5.9 with respect to the dividing-surface parameterR.

The integrals over the momenta in eq 2.5.9 are readily
performed analytically to yield:713

whereQrot,i, i ) 1,2 are the rotational partition functions for
the fragments, and〈...〉 x denotes an average over the space
x. If the interaction potential is known, Monte Carlo
integration provides a simple and efficient procedure for
evaluating expressions like eq 2.5.10. Analagous expressions,
involving powers of (E - V) or (E - V - Erot) have been
derived for the microcanonical and microcanonical/J-resolved
transition state partition functions.750-752 These expressions
can also be efficiently evaluated via Monte Carlo integration.

The evaluation of the transition-state partition function
according to eq 2.5.10, or its microcanonical or microca-
nonical/J-resolved analogue, has been termed flexible transi-
tion-state theory.714,753The earliest application of a flexible
transition state theory-like model was provided by Chesnav-
ich and co-workers in their study of ion-dipole capture.734

Both phase space theory and flexible transition-state theory
implicitly assume that the reaction coordinate is the separa-
tion between the centers-of-mass of the two reacting frag-
ments. When the transition state lies at large separations,
this assumption is perfectly reasonable. However, at closer
separations a more reasonable reaction coordinate is more
closely related to the distance between the atoms or orbitals
involved in the incipient bond. As a result, flexible transition
state theory often significantly overestimates (e.g., by a factor
of 2) the reaction rate. A discussion of the relation between
PST, flexible transition state theory, and a phase space model
of Klots754 is provided elsewhere.488

In variable-reaction-coordinate transition state theory
(VRC-TST) a more general reaction coordinate is con-
sidered.755-757 This reaction coordinate is specified by a fixed
distance between two arbitrarily located pivot points, one
on each of the two reacting fragments. When the pivot points
are placed at the centers of mass of the corresponding
fragments, flexible transition-state theory is recovered. When
they are instead located at the atoms involved in the incipient
bond, one recovers an approach that is more analogous to
an expansion of the potential around the minimum energy
path360,362,369,390,394,758but with the possibility for a fully
coupled anharmonic treatment of the transitional modes. The
variational minimization in VRC-TST involves as many as
seven parameters; the distanceR and two 3D vectorsd(1)

andd(2), connecting the center of mass of each fragment to
its pivot point. Fortunately, the directions of the vectorsd(1)

andd(2) are generally clear from physical grounds, and one
needs to optimize only the three distances. In particular, the
optimal pivot point generally lies somewhere along the vector
pointing from the atom involved in the incipient bond to the
center of its radical orbital.

The incorporation of this variable reaction coordinate is
complicated by the fact that the reaction coordinate is no
longer separable from the remaining orientational coordinates
of the transitional modes. As a result, expressions like eq
2.5.9 are no longer applicable. Instead, one must return to
the original expressions like eq 2.4.17. For a canonical
ensemble this implies expressing the partition function as

where δ is the Dirac delta function,S ) s specifies the
dividing surface (so thatS is the reaction coordinate), and
an overdot denotes a time derivative. (Note that one does
not need to specify a reaction path, just a dividing surface.)
With eq 2.5.11, analytic integrations over the momenta are

Q(T,s) ) â∫dRdp

hn
exp[-â(K + V)]δ(S- s)ṠΘ(Ṡ)

(2.5.11)

Qtransitional(T,R) ) 1

hn∫dΩ12dΩ1dΩ2dpΩ12
dpΩ1

dpΩ2
×

exp{- [K + V(Ω12,Ω1,Ω2,r)]/kBT} (2.5.9)

Qtransitional(T,R) ) Qrot1
Qrot2(2πµR2kBT

p2 )
〈exp(-âV(Ω12,Ω1,Ω2,r))〉Ω12,Ω1,Ω2

(2.5.10)

Modeling the Kinetics of Bimolecular Reactions Chemical Reviews, 2006, Vol. 106, No. 11 4551



still possible, and, given the interaction potential, the resulting
configurational integrals are again readily evaluated via
Monte Carlo integration.759-765

At the canonical level the expression for the most general
case of two nonlinear rotors reduces to765

whereIi
(k) is the principal moment of inertiai of fragmentk,

s is the distance between the two pivot points, and the
kinematic factorΦ is given by

wheren(12) is the unit vector pointing from the second pivot
point to the first one, andni

(k) is the unit vector directed
along the principal axisi of the fragmentk. Again, similar
expressions involving powers in (E - V) or (E - V - Erot)
have been obtained for the microcanonical and micro-
canonical/J-resolved cases.759-765

The kinematic factor is unity for center-of-mass pivot
points and is otherwise greater than unity. This implies that
any reduction in the predicted rate coefficient due to variation
in the form of the reaction coordinate is due entirely to
increased potential values in the Boltzmann orientational
average. Empirically, the optimal dividing surfaces have been
found to have a shape that follows the potential energy
contours for small angular deviations from the minimum
energy path while sampling the highly repulsive interactions
at large deviations.766-768 In many instances, the optimal
dividing surfaces are obtained by placing the pivot points
near the center of the radical orbitals. For a variety of atom-
plus-radical reactions, the contours of the radical orbitals
were found to be a good approximation to the optimized
dividing-surface shape.766-768 Indeed, using the radical-orbital
contours as a dividing surface might well provide an even
more optimal transition-state theory estimate.

The most difficult aspect of the implementation of VRC-
TST involves the generation of a suitable potential energy
surface. This potential energy surface generally must span
the region from 2 to 4 Å in theincipient bond distance and
cover all orientations of the two fragments. Early work
employed qualitative model surfaces based, for example, on
assumed extrapolations and interpolations of the potential
from the molecular bonding to the long-range interaction
regions.769-771 Such model studies are similar to empirical
implementations of the statistical-adiabatic-channel model727,728

and to other models assuming an exponential dependence
of transitional mode frequencies on the reaction coordinate.772

For radical-radical reactions, considerable effort has
recently been devoted to obtaining accurate potential energy
surfaces from detailed electronic structure calculations. A
difficulty is that accurate calculations of potential energy
curves for radical-radical reactions generally must involve
multireference wave functions;773-775 standard single-refer-
ence-based methods are generally inadequate in the tran-
sition-state region for this kind of reaction. When one of
the fragments is an atom and the other is nonlinear, the
requisite potential energy surface is 3D. In this instance,

spline and/or Fourier fits to grid-based ab initio calculations
provide an effective procedure for generating the potential.
The VRC-TST approach was used in a number of applica-
tions to radical-plus-H atom recombination reactions.766-768

Illustrative results from a study769,776of the CH3 + H reaction
are provided in Figure 7. The VRC-TST calculated capture
rate is seen to be in good agreement with experiment777-779

and is also only about 10% greater than the capture rate
evaluated from rigid-body trajectory simulations. An earlier
study of this reaction780 found good agreement between
quasiclassical trajectory simulations and reaction-path-based
variational TST predictions. A recent study has applied this
approach to the kinetics of radical reactions with O atoms.743

For reactions of two nonlinear fragments the requisite
potential energy surface is six-dimensional. In this instance,
a grid-based scheme is ineffective due both to the large
number of points required to appropriately sample the full
orientational space and to the inefficiency of simple multi-
dimensional fitting schemes. For a number of such reactions,
an alternative approach involving the direct determination
of the potential energy for each of the configurations sampled
in the Monte Carlo integration has proven to be effec-
tive.744,781-784 The results obtained from this approach for
the HNN + OH reaction are illustrated in Figure 8.783 An
accurate estimate of the HNN+ OH rate coefficient was a
key ingredient in predictions for the calculated branching in
the NH2 + NO reaction. The latter reaction is of central
importance in the Thermal De-NOx process. The predicted
decrease in the HNN+ OH association rate coefficient with
increasing temperature as well as the details of the cis/trans
branching were both important for reproducing the observed
branching for the NH2 + NO reaction.

For many reactions, there are multiple sites where the two
reacting fragments can bind together. For example, in the
HNN + OH reaction discussed in the previous paragraph,
the OH can bind to either the cis or trans side of the HNN
fragment. Other examples of reactions with multiple binding
sites are the recombination of resonantly stabilized radicals,
such as C3H3, and ion-molecule reactions with multiple
electrostatic minima. Early VRC-TST work on such reactions
assumed a simple separation of the channels, with separate
optimizations of the transition-state dividing surface for each
channel. However, in many instances the channels are not

Qtransitional(T,s) ) 2(kBT

p2 )4(µs2

π2 ) {∏
k)1

2

∏
i)1

3 x2πIi
(k)}〈Φ

exp(-âV(Ω12,Ω1,Ω2))〉Ω (2.5.12)

Φ ) x1 + µ∑
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2

∑
i)1

3

(n(12) × d(k)‚ni
(k))2/Ii

(k) (2.5.13)
Figure 7. Plot of the CH3 + H high-pressure rate coefficient versus
temperature. The solid line denotes VRC-TST predictions, the
dashed line denotes trajectory predictions, and the various symbols
denote experimental measurements.
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separable. Furthermore, implementing the assumed separation
via approximate infinite potential barriers, at least in
principle, negates the variational principle.

Recently, an improved procedure for treating such multiple
addition channel reactions was presented.785 This procedure
expresses the overall transition state dividing surface in terms
of a composite of individual surfaces with one surface for
each of the different binding sites. Each of the individual
surfaces is specified in terms of a fixed distance between
two points as in the original VRC-TST approach. With this
approach the global flux through the overall dividing surface
is evaluated, and minimization of this global addition flux
is accomplished via variation of the VRC-TST parameters
for each of the individual surfaces. This multifaceted dividing
surface approach was shown to provide a satisfactory
reproduction of the trajectory estimates for the C3H3 + H
reaction.

2.5.3. Master Equation and Its Application to Reactions
over Potential Wells

In Section 2.4, we pointed out that one of the assumptions
of transition state theory is that the reactants are distributed
among their states according to an equilibrium distribution.
We also pointed that this is often a reasonable assumption
for simple barrier reactions. As we now turn attention to
barrierless association reactions and multiple-well, multiple-
arrangement reactions we must reexamine the equilibrium
assumption. This will require a consideration of energy
transfer collisions and their competition with reaction. This
competition, as well as the competition between various
possible reactions of the collisional intermediates (e.g.,
redissociation vs rearrangement even in the absence of energy
transfer) is controlled by the master equation, which is the
governing equation of the statistical model for multiple-well,
multiple-arrangement reactions.

In its most primitive form, the master equation can be
written as

whereni(t) is the number density (or population) of statei
at time t, andpij is the probability per unit time of a tran-
sition from statej to statei. The evolution of the popu-
lations according to eq 2.5.14 is equivalent to a stoch-
astic Markov process. The evolution is Markovian as
long as thepij data do not depend explicitly on the time or
on the past history of the populations.786 For our pur-
poses, such an equation will be applicable as long as the
characteristic times for intramolecular motion are much
smaller than the average time between collisions. This
condition is always satisfied for dilute gases, and thus we
can apply the ME under almost all gas-phase conditions, at
least until we reach pressures of several hundred atmo-
spheres.

The master equation in the form of eq 2.5.14 has been
widely applied to chemical kinetics problems involving
diatomic molecules. Detailed analyses of this type are
contained in articles on a variety of applications;544,787-792

these articles also contain a bibliography of previous work
on similar topics. In general, eq 2.5.14 could also be
nonlinear if thepij values were functions of theni(t) val-
ues. This would occur for example in the dissociation of a
pure diatomic gas where vibration-vibration energy trans-
fer is important, whereas dissociation of a diatomic mole-
cule dilute in a rare gas is an example of the linear case.
Nonlinear problems have been treated theoretically only
infrequently in the past,790,793,794but they are of some cur-
rent interest.795-798 In the following, we discuss molecules
more complicated than diatomics, and a linear version of
the master equation, which is adequate for the purposes
discussed below.

For large, polyatomic molecules (or collision complexes),
there are too many states at energies of interest to resolve
them all. Consequently, we adopt a contracted, coarse-grained
description of these molecular systems. Instead of talking
about populations of individual states, we talk about popula-
tions of states with energy betweenE and E + dE, or
populations of states with energy betweenE and E + dE
and with angular momentum quantum number equal toJ. If
we had not already indicated our intent to adopt the RRKM
approximation, this contracted description would force it on
us. It distinguishes the reactivity of states only by the good
constants of the motion in the isolated molecule, the total
energy and total angular momentum, and quite frequently
only by the total energy.

The transition probabilities indicated in eq 2.5.14 are of
two types: reactive (unimolecular) and collisional (bimo-
lecular). Radiative processes could also be included, but they
are negligible in most nonastrophysical applications. To keep
the master equation linear, we envision an experimental
situation in which a bimolecular reaction R+ X can be
studied under pseudo first-order conditions, i.e.

wherenB is the number density of an inert diluent,nX is the
number density of the reactant present in excess (frequently,
but not necessarily, a stable molecule), andnR is the number
density of the limiting reactant (usually a free radical). We
assume that R and X, upon collision, form one or another
of M configurations of RX. For such conditions, the master
equation for theE, J-resolved number density of isomeri of
the RX complex can be written as

Figure 8. Plot of the HNN + OH high-pressure addition rate
coefficients versus temperature. The dashed line denotes the rate
to form trans HNNOH, the dotted line denotes the rate to form
cis-HNNOH, and the solid line denotes the total addition rate.

dni

dt
) ∑

j

(pijnj(t) - pjini(t)) (2.5.14)

nB . nX . nR (2.5.15)
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whereni(E,J)dE is the number density of isomeri of RX
with energy betweenE and E + dE and with angular
momentum quantum numberJ; Z is the collision rate of RX
with the bath gas;E0

(i) is the ground-state energy of isomer
i; Pi(E,J;E′,J′) is the probability that a collision will transfer
a molecule in welli from a state with energy betweenE′
and E′ + dE′ and with an angular momentum quantum
numberJ′ to a state with energy betweenE andE + dE and
an angular momentum quantum numberJ; kij(E,J) is the
unimolecular, RRKM rate coefficient for isomerization from
well j to well i; kdi(E,J) is the RRKM rate coefficient for
dissociation of isomeri to the original reactants (X and R);
kpi(E,J) is the analogous rate coefficient for dissociation from
well i to a set of bimolecular productsp; Np is the number
of such product sets; andKeqi is the equilibrium constant for
the X + R a i reaction. The functionFi(E,J) is the
equilibrium distribution in welli at temperatureT,

whereQi(T) is the vibrational-rotational partition function
for well i, andFi(E,J) is the correspondingJ-resolved density
of states.

Most commonly a simpler version of eq 2.5.16 is
employed in chemical kinetics problems, one in whichE is
the only independent variable (and not bothE and J), an
enormous simplification. It is useful to write it out for clarity:

The term in eq 2.5.16 involvingFi(E,J) (or that in-
volving Fi(E) in eq 2.5.18) is more naturally written as
kai(E,J)nRnXFR,X(E,J)e-âE/QR,X, wherekai(E,J) is the associa-
tion rate coefficient for formation of isomeri from the
reactants, QR,X is the partition function per unit volume of
reactants (including relative translational motion), and
FR,X(E,J) is the corresponding density of states. The form
used in eq 2.5.16 comes from applying microscopic revers-
ibility to the association/dissociation reactions; both forms
assume that the reactants are maintained in thermal equilib-
rium. The form shown in the equation has the advantage
that is does not require the explicit calculation ofFR,X(E,J),
which is a complicated convolution of the state densities of
the two fragments R and X. Nevertheless, we have use for
both formulations below.

The second of the inequalities in eq 2.5.15 implies that
nX is a constant, thereby rendering the master equation linear.
Thus, it is necessary to supplement the master equation only
with an equation fornR. Assuming again that the reactants
are maintained in thermal equilibrium throughout the course
of the reaction, we can formulate such an equation as follows:

In writing eq 2.5.19 we have restricted ourselves to the 1D
problem; the extension to two dimensions (i.e., where both
E andJ are independent variables) should offer no difficulty.
Equations 2.5.16 and 2.5.19 constitute a set ofM + 1
integrodifferential equations for the unknown populations,
ni(E) andnR, in the 1D case. Before we solve these equations,
we need to consider the collisional terms in the master
equation.

2.5.4. Energy Transfer
Collisional energy transfer in highly vibrationally excited

molecules and collision complexes is a critical factor in
determining rate coefficients for reactions that involve the
formation of intermediate complexes that live long enough
to suffer one or more collisions. Energy transfer manifests
itself in the master equation in the rate coefficient for energy
transfer,k(E,J;E′J′), which we have implicitly assumed in
eq 2.5.16 is factorable into a collision rate,Z(E′,J′), and a
probability density function,P(E,J;E′,J′). We have gone even
one step further and takenZ(E′,J′) ) Z, a constant indepen-
dent of energy and angular momentum. Such a formulation
does not pose a limitation ifZ is taken to be sufficiently
large and ifP(E,J;E′,J′) is chosen accordingly. As far as the
master equation is concerned, there is a degree of arbitrari-
ness allowed in defining what one means by a “collision.”
The only constraint is that the same definition must be used
consistently in calculatingZ andP(E,J;E′,J′).

The problem of definingZ unambiguously is strictly a
classical mechanical one; it does not exist in quantum
mechanics. The problem occurs because of the singularity
that exists in classical mechanics at∆E ) 0 in the energy
transfer cross section,σ(E,J;∆E). It is related to the singular-
ity at zero scattering angle in the classical, elastic, dif-
ferential-scattering cross section. As the impact parameter
in classical trajectory calculations is increased, there is less
and less energy transferred, and the scattering angle becomes
smaller and smaller. There are a very large number of
collisions with∆E ≈ 0 and nearly zero scattering angle. One
can increasebmax, the maximum impact parameter in the
trajectory calculations, without limit and not affect the
inelastic scattering cross-sections. Classical trajectory cal-
culations do give unique values for the productZ〈∆E〉, where
〈∆E〉 is the average energy transferred per collision, but not
for Z and 〈∆E〉 individually.799-802 Thus, the questions of
how to define a collision, how to calculateZ, and how to
choose the “optimum” value ofbmax in a classical trajectory
calculation are intimately connected.

It has become common practice in master-equation
analyses to chooseZ to be the Lennard-Jones collision rate,
ZLJ. However, such a choice has been called into question
several times in the past.799-802 Recognizing thatZ〈∆E〉 or
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πbmax
2 〈∆E〉, is a constant in trajectory calculations as long

asbmax is large enough, and defining〈∆E〉b as the average
energy transferred per collision for a fixed impact parameter
b, Lendvay and Schatz800 used the criterion thatbmax be
defined by the convergence of the integral,

to within 3% of its limiting constant value asbmaxf ∞. They
found that, for collisions of highly excited CS2, SF6, and
SiF4 molecules with a variety of collision partners,πbmax

2

determined from this criterion was always larger thanZLJ

and could be larger by as much as a factor of 4.7, with a
typical ratio of about 3. However, Nordholm and Schranz802

subsequently argued that the condition used by Lendvay and
Schatz is too stringent and offered a somewhat more
complicated alternative, one that frequently yields values only
slightly larger thanZLJ. This result is more consistent with
the earlier work of Brown and Miller,799 who studied
collisions of highly excited HO2 molecules with helium.
Brown and Miller approached the problem from a different
perspective, by considering the energy-transfer cross section,
σ(E,J;∆E), directly. All the unwanted, high impact-parameter
trajectories are limited to a narrow region near∆E ) 0 of
this function. In fact, asbmax is increased beyond a particular
point, only values ofσ in this region continue to change.
Ignoring this “elastic singularity” at∆E ) 0, Brown and
Miller fit the remaining inelastic cross sections to an assumed
functional form, thus extrapolating the inelasticσ(E,J;∆E)
to ∆E ) 0. Integrating over all values of∆E gives a value
for the total inelastic collision cross section, and thus an
appropriate value ofZ. The values ofZ thus obtained by
Brown and Miller varied with theE andJ of HO2, but on
average they were about 25% larger thanZLJ.

Taking Z ) ZLJ is probably a satisfactory choice for
collisions of polyatomic molecules with weak colliders such
as rare gas atoms and diatomic molecules,803 but not for
collisions between two large polyatomic molecules or for
collisions involving highly polar molecules. In such cases
the Lennard-Jones potential is not a very good description
of the intermolecular interactions. Michael et al.804 and
Durant and Kaufman805,806have investigated alternative ways
of determining appropriate values forZ. The latter favor
calculating the total elastic cross section quantum mechani-
cally and using it to defineZ. However, this is probably too
complicated for routine use in master-equation modeling. It
is worth repeating, however, that only the productZP, not
the individual factors, has meaning for our purposes.

The energy transfer functionP remains an elusive quantity,
even though it has been the subject of investigation numerous
times in the past, both theoretically799,801,802,807-816 and
experimentally.807,817-828 We shall restrict our discussion to
the 1DP(E,E′) and forego considering the 2DP(E,J;E′,J′);
very few problems actually require knowledge of the latter
anyway. It is common practice in master-equation models
to assume a single-exponential-down function forP(E,E′),
in which452,829-835

whereCN(E′) is a normalization constant and∆E ) E′ - E.
The activating wing ofP(E,E′), i.e., the function forE >
E′, is then determined from detailed balance.830 The prevalent

use of the single-exponential-down model is largely a matter
of expedience: the parameterR in the exponential is equal
to 〈∆Ed〉, the average energy transferred in a deactivating
collision, to a high degree of accuracy in most cases. In
general, one can takeR to be a function ofE′ andT, even
though doing so is not yet common practice. Evidence from
thermal dissociation/recombination experiments suggests
strongly that〈∆Ed〉 increases roughly linearly withT, at least
for small molecules with weak colliders.831 More direct
experiments also suggest that there should be an energy
dependence807,831,832of 〈∆Ed〉. Trajectory calculations confirm
this behavior only to a limited extent; the problem is that
most such investigations are reported in terms of〈∆E〉, rather
than〈∆Ed〉. The former has built-in energy and temperature
dependence from varying contributions of the activating wing
with E andT; the latter does not.

A more serious concern is thatP(E,E′) is not very
accurately described by a single-exponential-down model.
Since the Brown-Miller classical-trajectory analysis of He
- HO2 collisional energy transfer, virtually all classical
trajectory calculations and direct experiments have concluded
that a double-exponential-down formulation is a more
realistic description ofP(E,E′).799,801,802,809,812,816,821,823,836Such
a model can be written as

Again, the activating wing ofP(E,E′) is determined from
detailed balance;CN(E′) is a normalization constant, andf,
R1, and R2 are parameters in the model. However, such a
model has not been widely used in master-equation calcula-
tions. Thermal dissociation/recombination rate coefficients
are not very sensitive to the form ofP(E,E′),837 only to 〈∆Ed〉
or 〈∆E〉. This may not be the case for bimolecular reactions
over potential wells, especially those where the potential
energy barriers to isomerization or fragmentation to bimo-
lecular products lie much lower in energy than the reactants.
In fact, Miller and Chandler838 found significant effects of
the high-energy tail ofP(E,E′) in studying the overtone
isomerization of methyl isocyanide. Such photoactivated
problems are very similar energetically to the bimolecular
collision problems just described. In any event, there have
as yet been no systematic investigations of the effects of
various forms ofP(E,E′) on bimolecular reactions over
potential wells. Also, there is no systematic prescription for
choosing the parameters in eq 2.5.22 for any particular
molecular system, an obstacle to implementing the double-
exponential-down model.

Luther and co-workers827 have suggested a third model
for P(E,E′),

with the activating wing determined from detailed balance,
as usual;YandR are parameters in the model. The advantage
of this formulation is a certain degree of flexibility. IfY )
1, P(E,E′) reduces to a single-exponential-down function. If
Y < 1, there is a long tail on the distribution, not unlike that
of a double exponential, and ifY > 1, one gets a highly
localizedP(E,E′) function. In fact,Y ) 2 corresponds to a

πbmax
2 〈∆E〉 ) ∫0

bmax 〈∆E〉b 2πbdb (2.5.20)

P(E,E′) ) 1
CN(E′)

exp(-∆E/R), E e E′ (2.5.21)

P(E,E′) ) 1
CN(E′)

[(1 - f) exp(-∆E/R1) +

f exp(-∆E/R2)] E eE′ (2.5.22)

P(E,E′) ) 1
CN(E′)

exp[- (∆E
R )Y] E e E′ (2.5.23)
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Gaussian. Like the double-exponential model, this function
has not been widely used.

Regardless of the considerations raised above, master-
equation models of chemical kinetics almost invariably utilize
Z ) ZLJ and invoke a single-exponential-down model for
P(E,E′). As noted above, these choices are largely a matter
of convenience. They are reinforced by the lack of any
systematic procedure for choosing the parameters in the more
complicatedP(E,E′) models and by the fact thatZLJ is
probably not too bad a choice forZ if the bath gas is a weak
collider, such as one of the rare gas atoms or a diatomic
molecule. Energy transfer in highly vibrationally excited
molecules is probably the least well understood area of
theoretical chemical kinetics.

2.5.5. Solving the Master Equation
The master equation has been formulated and solved in a

number of different ways,506,788-800,839-871 and we especially
note some attempts to solve the 2D master equation for some
special cases.750-752,839-847,851,853,855-857,859,860Most work has
been directed toward thermal dissociation reactions, which
are just a special case of the methodology described below.
An exception is the work on C2H5 + O2 by Venkatesh et
al.,856,860whose methodology for determining rate coefficients
is of limited applicability, because it implicitly equates a rate
coefficient to a “flux coefficient.” We restrict our attention
here mainly to the 1D problem, which is probably sufficiently
accurate for most purposes. For application to bimolecular
reactions over potential wells, there is a very important case
for which it is not much more difficult to solve the 2D master
equation than it is to solve the 1D problem. That case is the
collisionless (or zero-pressure) limit, obtained from eq 2.5.16
by taking the limitZ f 0. By comparing 2D solutions (which
we call microcanonical/J-conservative theory) with 1D
solutions (which we call microcanonical theory) in this limit,
one can get a good idea of the potential importance of angular
momentum conservation on the reaction in general. SinceJ
is a constant of the motion in the absence of collisions, this
limit might be expected to give the maximum effect of
angular momentum conservation on the thermal rate coef-
ficients. Moreover, under conditions of interest, many
important reactions actually occur in this limit.

Another important limit is the high-pressure, or collision-
dominated, limit in whichZ f ∞. Rate coefficients in this
limit can be calculated directly from the transition-state
theory for bimolecular reactions as the rate coefficients for
complex formation, or the “capture” rate coefficients. In this
limit, thermal equilibrium is established in the first complexes
formed before any rearrangement can take place. Conse-
quently, the only products formed are those corresponding
to the wells that are directly connected to the reactants.

Our discussion of the collisionless limit follows closely
that of Hahn et al.872 The theoretical development is a
generalization of that first given by Miller et al.873 If one
takesZ ) 0, eq 2.5.16 can be written in the simple vector
form,

where|n(E,J)〉 is (in Dirac notation) the vector of population
densities for a givenE and J, i.e., each component of the
vector corresponds to the population of a different well, and

the subscript RX denotes R+ X. The elements of the matrix
K (E,J) are algebraic sums of isomerization and dissociation
rate coefficients; all its diagonal entries are positive, and all
its off-diagonal entries are negative. The vector|b(E,J)〉
contains the association rate coefficients.

Applying the steady-state approximation to eq 2.5.24, one
obtains for the population vector,

whereK -1(E,J) is the inverse matrix ofK (E,J). The rate of
formation of bimolecular products can also be described by
a vector equation,

where the components of|P(E,J)〉 are the number densities
per unit energy of the various possible sets of bimolecular
products, andD(E,J) is the matrix whosei,j element is the
dissociation rate coefficient from wellj to product i.
Substituting eq 2.5.25 into eq 2.5.26 results in the expression,

Integrating overE and summing overJ, one can easily
identify a vector of thermal rate coefficients as the factor
multiplying nRnX,

where the subscript 0 reminds us that we are working in the
collisionless limit.

A further simplification results when the appropriate
RRKM rate coefficients of eq 2.5.6 are substituted into eq
2.5.28. All the densities of states cancel,873 and one is left
with the result,

whereND, NK
-1, and|Nb〉 are related toD, K -1, and|b〉 in

that the former contain only the numeratorsN‡(E,J) in the
corresponding RRKM rate coefficient expressions of the
latter. The vector|k0(T)〉 contains the thermal rate coefficients
for all the bimolecular product channels. Equation 2.5.29 is
very convenient in that one can work only withND, NK, and
|Nb〉 and never have to deal with the densities of states.
Evaluating eq 2.5.29 offers no particular difficulty as long
as one is careful to avoid singularities inNK.872

Perhaps the most intriguing example of a bimolecular
reaction that takes place in its collisionless limit under normal
conditions is the reaction between NH2 and NO.482,874This
is the key reaction in the Thermal De-NOx process,875-878

an important noncatalytic aftertreatment scheme for removing

d|n(E,J)〉
dt

) -K (E,J)|n(E,J)〉 +

nRnX|b(E,J)〉FR,X(E,J)e-âE/QR,X (2.5.24)

|n(E,J)〉 ) K-1(E,J)|b(E,J)〉nRnXFR,X(E,J)e-âE/QR,X(T)
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d|P(E,J)〉
dt

) D(E,J)|n(E,J)〉 (2.5.26)

d|P(E,J)〉
dt

)

D(E,J)K-1(E,J)|b(E,J)〉nRnXFR,X(E,J)e-âE/QR,X(T)
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NOx from the exhaust gases of stationary combustors;
ammonia is the chemical additive. The NH2 + NO reaction
has three energetically accessible product channels,

although only the first two are kinetically significant.
Reaction (R1a) is dominant at low temperatures and remark-
ably involves breaking all three bonds in the reactants and
forming three completely new bonds in the products, all in
one collision. However, the radical-producing channel, (R1b),
is the most significant feature of the reaction. Above a
temperature of 1100 K, the chain branching from this channel
allows the process to be self-sustaining. Figure 9 shows the

reaction coordinate diagram for the reaction. Even at the
lowest energies from which a complex can be formed from
NH2 + NO, the complex lifetimes are much smaller than
the mean time between collisions, 10-13 - 10-11 s compared
to 10-10 s at one atmosphere pressure.874 Consequently, one
expects the reaction to be in its collisionless regime up to
pressures of a few atmospheres. This behavior has been
confirmed experimentally at least up to pressures of almost
an atmosphere.874

Diau and Smith879 were the first to treat the kinetics of
the reaction theoretically using methods like those discussed
in this review. Unfortunately, their PES was insufficiently
detailed to be quantitatively accurate. Subsequently, Miller
and Klippenstein880 and Fang et al.783 studied the reaction in
detail. The total rate coefficient is largely (but not exclu-
sively) controlled by TS2 (transition state 2) in Figure 9,
whereas the product distribution is controlled by a competi-
tion between TS4 and fragmentation of the trans HNNOH
isomers into NNH+ OH through TS8. The latter transition
state actually includes four separate reaction paths. Treating
this part of the process (both the quantum chemistry and the
transition-state theory) accurately is crucial. Making modest
adjustments to key features of the PES, Fang et al. were able
to predict both the total rate coefficient and the branching
fraction (k1b/(k1a + k1b + k1c)) of the reaction accurately over
a wide range of temperatures (see Figures 10 and 11).
Interestingly, none of these results are very sensitive to
whether angular momentum is conserved.

Although the collisionless limit is of considerable practical
importance, problems in which collisions play a significant,
if not dominant, role are even more prevalent. For reasons
noted above, we restrict ourselves to a discussion of the 1D
master equation (microcanonical theory, not microcanonical/
J-conservative theory). Also, it is convenient to assume that
we have added terms to the master equation, analogous to
the Keqikdi(E)Fi(E)nRnX term on the right-hand side of eq
2.5.18, that describe reassociation of the bimolecular prod-
ucts. Furthermore, let us assume that for each set of
bimolecular products one of the components is maintained
in great excess, analogous tonX for the reactants. These
assumptions keep the master equation linear and allow us
to deal with all chemical configurations (wells, bimolecular
reactants, and bimolecular products) on an equal footing.
Such analyses could easily be performed, but it is common
practice to assume that any set of bimolecular products

NH2 + NO f N2 + H2O (R1a)

NH2 + NO f NNH + OH (R1b)

NH2 + NO f N2O + H2 (R1c)

Figure 9. Reaction coordinate diagram for the NH2 + NO reaction.

Figure 10. Plot of the total rate coefficient for the NH2 + NO
reaction versus temperature. Symbols denote various experimental
measurements, whereas the solid line denotes collisionless-limit
master-equation predictions.

Figure 11. Plot of the branching ratio to form HNN+ OH in the
NH2 + NO reaction versus temperature. Symbols denote various
experimental measurements, whereas the solid line denotes colli-
sionless-limit master-equation predictions.
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represents an “infinite sink”, i.e., that such products, once
they are formed, never return to the wells. We deal with
this approximation after we treat the more general case.

Equations 2.5.18 and 2.5.19 and an equation analogous
to (2.5.19) for each set of bimolecular products can be
combined into one (vector) master equation. After the
integrals in these equations are approximated as discrete sums
with a grid spacingδE, one can manipulate the master
equation algebraically into the deceptively simple form,862

whereG is a real, symmetric (Hermitian) matrix, and|w(t)〉
is the vector of unknown populations,

In eq 2.5.31,yi(E,t) ) xi(E,t)/fi(E) and fi2(E) ) Fi(E)Qi(T);
xi(E,t)δE is the fraction of the initial reactant concentration
that is present in welli with energy betweenE andE + δE
at time t, andXR is the fraction that is present as R at time
t. The three dots at the end indicate that there is a component
of the vector of the same form as (nX/QRXδE)1/2XR for each
set of bimolecular products.

The Hermiticity of the transition matrixG facilitates the
solution of eq 2.5.30. One can find its eigenvalues and
construct an orthonormal set of eigenvectors ofG from the
solutions of the eigenvalue equation,

One can then expand|w(t)〉 in this basis and obtain the
solution of eq 2.5.30 in the form

where|w(0)〉 is the initial-condition vector, andT̂ is the time
evolution operator,

whereN is the order of the matrix,

andNi is the number of grid points in welli; the final 1 in
the sum is for the reactants.

All the eigenvalues ofG are nonpositive, i.e., either zero
or negative. There is always one zero eigenvalue,λ0 ) 0;
the corresponding eigenvector corresponds to a state of
complete thermal and chemical equilibrium. The remainder
of the eigenvalues must be negative,λj < 0, with j ) 1,...,N
- 1; otherwise, the solution (eqs 2.5.33 and 2.5.34) would
blow up ast f ∞. We refer to the second largest (i.e., the
least negative) eigenvalue ofG asλ1, the third largest asλ2,
and so on; the corresponding eigenvectors are|g1〉,|g2〉,...,-
etc. Widom881-883 describes these eigenpairs as “normal

modes of relaxation” of the system. They describe the
system’s approach to equilibrium from an arbitrary initial
condition.

From the solution vector one can obtain the macroscopic
populations directly for the bimolecular components and by
integration,

for the wells. Even thoughN may be an extremely large
number, typically in the thousands in a practical problem,
not all of these relaxation modes describe chemical change,
i.e., changes in the macroscopic populations. The vast
majority simply describe the relaxation of the internal degrees
of freedom of the molecules corresponding to the wells, i.e.,
relaxation of the internal energy. We refer to these eigen-
modes as internal energy relaxation eigenmodes (IEREs).
The remainder are chemically significant eigenmodes (CSEs).
When the eigenvalues corresponding to the IEREs and CSEs
are vastly different in magnitude,881-883 the internal degrees
of freedom relax much more rapidly than the chemical ones.
Such a situation does not always exist. However, when these
conditions do prevail, it is an enormous simplification for
determining the thermal rate coefficients from the eigenvalues
and eigenvectors ofG. Moreover, even when the eigenvalues
do not satisfy these conditions, modifications to the general
method can be made to determine the rate coefficients of
interest, as discussed below, after eq 2.5.51.

If there areS “species”, or chemical configurations, in a
problem,

chemically significant eigenmodes in addition toλ0, |g0〉.
Each of these modes describes the approach to chemical
equilibrium of one species with one or more other species.
To see the validity of eq 2.5.37, it is useful to consider a
specific case. Suppose we have a problem whereS ) 4.
Chemical equilibrium can be brought about in one of two
distinct ways. In the first way, the fastest-relaxing mode
brings one species into equilibrium with another. The second
fastest CSE equilibrates these two species with a third, and
the slowest eigenpair describes the equilibration of the first
three species with the last. In the other way of approaching
chemical equilibrium for this problem, the third and fourth
species equilibrate through the second eigenmode, and the
two pairs equilibrate via the slowest-relaxing eigenmode.
Either way,Nchem ) S - 1. In more complicated problems
the number of possible ways that the system can approach
complete chemical equilibrium becomes quite large. Nev-
ertheless, there areS- 1 chemically significant eigenmodes.

For the same problem, i.e., one withSchemical configura-
tions, there areNk reversible elementary reactions occurring
simultaneously, where

If S ) 2, bothNchem andNk are equal to unity, and it is not
difficult to obtain the forward and reverse rate coefficients
from the single eigenvalue,λ1, and the equilibrium con-
stant.881 However,Nk increases quadratically withS and if,

d|w(t)〉
dt

) G|w(t)〉 (2.5.30)

|w(t)〉 ) [yI(EO
(I)),...,yI(El),...,yi(E0

(I)),...,yi(El),...,

( nX

QR,XδE)1/2

XR,...]T

(2.5.31)

G|gj〉 ) λj|gj〉 (2.5.32)

|w(t)〉 ) T̂|w(0)〉 (2.5.33)

T̂ ) ∑
j)0

N-1

eλjt|gj〉〈gj| (2.5.34)

N ) ∑
i)1

M

Ni + Np + 1 (2.5.35)

Xi(t) ) ∫Ei
(0)

∞
xi(E,t)dE (2.5.36)

Nchem) S- 1 (2.5.37)

Nk ) ∑
n)1

S-1

n )
S(S- 1)

2
(2.5.38)
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for example,S ) 10, thenNk ) 45. It is this large number
of elementary reactions, all occurring simultaneously, that
makes it difficult to obtain the phenomenological rate
coefficients from the raw time histories that come from
solutions to the master equation, but it is these rate
coefficients that we want for use in modeling macroscopic
chemical phenomena.

Under conditions where the IEREs relax faster than the
CSEs, the macroscopic populations can be written as

after the IEREs have been relaxed to zero. The coefficient
ai0 ) Xi(∞) is the equilibrium population of configurationi,
and

where∆Xij is the change in population that accompanies the
time evolution of eigenmodej from t ) 0 to t ) ∞ for a
specific initial condition. The values of the various∆Xij thus
depend on the initial condition, but they can be calculated
readily from the solution to the master equation, eqs 2.5.33
and 2.5.34. It is theλj and aij values that are required to
calculate the phenomenological rate coefficients.

Klippenstein and Miller884,885have derived two different
methods of determining the rate coefficients from the
chemically significant eigenpairs. In the first method, which
we call the initial-rate method, one utilizes different initial
conditions in evaluatingaij in eq 2.5.39. Differentiating this
equation with respect to time and taking the limitt f 0
results in the rate-coefficient expressions,

wherekTi is the total rate coefficient for removal of species
i, andkil is the i f l rate coefficient. The superscript (i) on
∆Xij

(i) indicates that speciesi must be the initial reactant.
This method is strictly applicable only as long as|λNchem| ,
|λNchem+1| since one must be able to identify a suitable time
to take ast ) 0. In other words, there must exist a time
period where all the IEREs have relaxed to zero, but no
reaction has occurred. This condition is not as restrictive as
it appears. In fact, it is generally presumed to be a necessary
condition for a rate-coefficient description of the chemical
kinetics to apply.

The second approach taken by Klippenstein and Miller is
what we call the long-time method, for reasons that will
become apparent below. This method consists of recognizing
that eq 2.5.39 is identical in form to the solution of a system
of first-order rate equations. One can then solve the inverse
problem of finding the phenomenological rate coefficients
for the system of reactions that generated the given solution.
Klippenstein and Miller solved this problem and obtained
the results,

where, if theaij are taken to be the elements of a matrixA,
the bij are the elements of its inverse,B ) A-1. Note that
eqs 2.5.42 apply to any and all initial conditions and, more
importantly, that eq 2.5.39 (and thus eqs 2.5.42) is applicable
as long as|λNchem| < |λNchem+1|, a less restrictive condition than
that necessary for the applicability of the initial-rate method.
As long as the rotational-vibrational relaxation period is
over before the chemistry is finished, there will be at least
a short period of time, late in the reaction, when a
phenomenological description of the chemical kinetics will
apply, with the rate coefficients given by eqs 2.5.42.

For most conditions that are of practical interest, the initial-
rate method and the long-time method yield the same values
for the rate coefficients. However, as the magnitude ofλNchem

approaches that ofλNchem+1 the long-time method will continue
to yield good values for the rate coefficients when the initial-
rate method will fail. Nevertheless, the initial-rate approach
is generally the method of choice, simply because it is easier
to apply under most conditions.884-886

In a seminal paper in 1974, Bartis and Widom887 used an
approach to the rate-coefficient problem similar to the long-
time method of Klippenstein and Miller, but with an
additional assumption. The essence of this assumption is that,
during the course of reaction, the state populations are not
perturbed greatly from their equilibrium values.884 One can
probably take this to mean that their result will apply when
only states that are not heavily populated at equilibrium are
affected significantly by the reaction. With this assumption,
Bartis and Widom derived rate-coefficient expressions
analogous to eqs 2.5.42 that satisfy detailed balanceexactly,
i.e., the forward rate coefficient divided by the reverse rate
coefficient is equal to the equilibrium constant. Although it
has not been proven here that the rate-coefficient expressions
given above satisfy detailed balance, they normally do. They
will satisfy detailed balance (at least) under the conditions
that the Bartis-Widom analysis applies.

The rate coefficients that are derived from eqs 2.5.41 and
2.5.42 are first-order or pseudo first-order rate coefficients.
In cases where the reactions are really bimolecular, the rate
coefficients calculated from these expressions must be
divided bynX or its equivalent to get the true bimolecular
rate coefficients. This minor modification is the only price
we pay for the “linearization” of the master equation
described above.

At this point it is convenient to consider a particular
example to illustrate the methods, to show how one can
approximate bimolecular products as infinite sinks, and to
describe what happens whenλNchembecomes equal toλNchem+1.
Figure 12 is a reaction coordinate diagram for the reaction
of propargyl radicals (C3H3) with hydrogen atoms.885 One
set of bimolecular products,3C3H2 (propargylene)+ H2, is
formed by direct abstraction on a separate (triplet) PES from
the others. Thus, the rate coefficient for this reaction can be
calculated independently of the rest by the methods discussed
at the beginning of this review. However, the theoretical
treatment of the remainder of the reaction requires the
methods described just above.

Xi(t) ) ∑
j)0

Nchem

aije
λjt, i ) I,...,M,R,P1,..., (2.5.39)

aij ) -∆Xij; j * 0 (2.5.40)

kTi ) ∑
j)1

Nchem

λj∆Xij
(i)

kil ) - ∑
j)1

Nchem

λj∆Xlj
(i)

(2.5.41)

kTi ) - ∑
j)0

Nchem

λjaijbji

kil ) ∑
j)0

Nchem

λjaljbji

(2.5.42)
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In studying this reaction Miller and Klippenstein885 lumped
all three of the remaining sets of bimolecular products into
a single infinite sink. Thus, for the purposes of the master
equation analysis, there are effectively only five species,Seff

) 5 andNchem) 4. At low temperature, if one starts with an
initial condition consisting of all C3H3 + H, one finds that
the fastest-relaxing eigenpair,λ4,|g4〉, describes the equilibra-
tion of C3H3 + H with propyne, C3H4p (well I of Figure
12), although other products may be formed simultaneously.
The next fastest-relaxing eigenpair (λ3,|g3〉) describes the
equilibration of these two species with cyclopropene
(c-C3H4), well III, while λ2,|g2〉 equilibrates the first three
configurations with allene (C3H4a), well II. The last CSE
(λ1,|g1〉) describes the slow leak of this equilibrated “four-
component” system into the infinite sink.

One can employ the methodology described above even
in the absence of complete chemical equilibrium at long
times. This can be illustrated for the case where there is only
one set of products in the sink. In this case, the macroscopic
populations satisfy the global conservation equation

Differentiating this equation with respect to time and then
integrating fromt ) 0 to t ) ∞, one obtains

Because the terms in eq 2.5.39 (or eq 2.5.34) are linearly
independent functions of time as long as no two CSEs are
equal, eq 2.5.44 must be satisfied not only globally but also
by each eigenmode individually, i.e.,

Thus one can calculate∆Xpj from eq 2.5.45; the other terms
in the equation come from the solution to the master equation,
as indicated above. These results, coupled with the long-
time limits,

can be inserted into eqs 2.5.41 and 2.5.42 to obtain the
thermal rate coefficients.

The situation is not quite so simple if there are mul-
tiple sets of products coupled together in an infinite
sink. The above procedure gives only the total rate coef-
ficient for all products; it says nothing about the indi-
vidual rate coefficients; however, it is not too much
more difficult to extract those. From eqs 2.5.33 and
2.5.34, one can writexi(E,t) during the rate-coefficient
period as

where cij(E) comes from eigenvectorj and the initial
condition. The total rate of formation of productp is (see eq
2.5.18)

Substituting eq 2.5.47 into eq 2.5.48, one obtains

Integrating this equation term-by-term fromt ) 0 to t ) ∞
results in

where

The sum and integral in eq 2.5.51 are relatively easily
evaluated, and eqs 2.5.50 and 2.5.51 can be used in eqs 2.5.41
and 2.5.42 to determine the phenomenological rate coef-
ficients.

Figure 13 shows the eigenvalue spectrum for the C3H3 +
H problem as a function of temperature at a pressure of 1
atm andnX corresponding to a partial pressure of 1 Torr. In
this diagram, the eigenvalues are labeled by their magnitude
at any given temperature rather than by function. If we had
labeled the curves by their equilibration function, there would
be some curve crossing in the diagram. For temperatures
above 1200 K it isλ4,|g4〉, not λ3,|g3〉, that brings about the
equilibration of cyclopropene with propyne, as indicated in
the diagram. AtT ≈ 2200 K,λ4 merges with the continuum
of IEREs, a common occurrence in complicated, high-
temperature reactions. In principle, this creates a problem
for the rate-coefficient analysis discussed above in that all
the CSEs are no longer discernible from the IEREs. How-
ever, the problem can be repaired relatively easily. The
merging ofλ4 with the continuum of IEREs means that the
reactionc-C3H4 a C3H4p equilibrates on IERE time scales.
Therefore, the two species cease to be distinct in the kinetic
sense discussed above, and we can combine them into a
single “superspecies” for kinetic purposes, takingS ) 4
instead of 5 in the analysis. This reduces the number of terms

Figure 12. Schematic diagram of the C3H4 potential energy surface.

XR + Xp + ∑
i)I

M

Xi ) 1 (2.5.43)

∆XR + ∆Xp + ∑
i)I

M

∆Xi ) 0 (2.5.44)

(∆XR + ∆Xp + ∑
i)I

M

∆Xi)j ) 0 (2.5.45)

Xp(∞) ) 1

XR(∞) ) Xi(∞) ) 0, (i ) I,...M) (2.5.46)

xi(E,t) ) ∑
j)1

Nchem

cij(E)eλjt (2.5.47)

dXp

dt
) ∑

i)I

M ∫Ei
(0)

∞
kpi

(E)xi(E,t)dE (2.5.48)

dXp

dt
) ∑

j)1

Nchem

eλjt∑
i)I

M ∫Ei
(0)

∞
kpi

(E)cij(E)dE (2.5.49)

Xp(∞) ) ∑
j)1

Nchem

∆Xpj (2.5.50)

∆Xpj ) -
1

λj

∑
j)1

Nchem∫Ei
(0)

∞
kpi

(E)cij(E)dE (2.5.51)
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in the sum of eq 2.5.41 by one and reduces theA and B
matrices associated with eq 2.5.42 by one row and one
column. This procedure is very useful (even necessary) in
extending the rate-coefficient regime to high temperatures.
Of course, at sufficiently high temperatures there is no real
distinction between CSEs and IEREs; all chemical processes
equilibrate on IERE time scales.

The theoretical methodology described above eliminates
the ambiguity that exists in more ad hoc methods of
calculating rate coefficients. In Figure 12, for example, TS4
is irrelevant in the analysis; including it or excluding it gives
the same results. That being the case, how does one
distinguish between single-step processes such as C3H4a f
C3H4p and its corresponding two-step process, C3H4a f
c-C3H4 f C3H4p, when the reaction must pass through the
c-C3H4 configuration in both cases? The above procedures
automatically make the correct distinctions without any need
for further arbitrary assumptions concerning energies or
lifetimes. Similarly, one never needs to ask or answer the
question, “Can allene dissociate ‘directly’ to C3H3 + H
through TS1a?”, or does such an occurrence necessarily
involve intermediate isomerization?

Figure 13 illustrates another important point concerning
dissociation. For temperatures higher than about 1800 K,λ2

and |g2〉 describe the equilibration of allene with propyne
and cyclopropene, whereasλ3 and|g3〉 describe the dissocia-
tion of the equilibrated threesome to C3H3 + H. At T )
2200K,-λ3 is larger than-λ2 by roughly a factor of 6, i.e.,
the isomerization reactions equilibrate considerably faster
than dissociation can occur. As a result, most experiments
are sensitive only to-λ2 and not to the dissociation rate
coefficients individually, regardless of which of the three
isomers is prepared as the reactant. This makes it very
difficult to measure the rate coefficients directly. Neverthe-
less, the theory yields good rate coefficients for the dissocia-
tion of the individual isomers to C3H3 + H. The results are
discussed and compared with experiment by Miller and
Klippenstein.885

Figure 13. Eigenvalue spectrum for the C3H3 + H problem at a
pressure of 1 atm.

Figure 14. Schematic diagram of the potential energy surface for C3H3 + C3H3 recombination.
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The most complex reaction to which the methods of
this review have been applied is the C3H3 + C3H3 recom-
bination.886 The analysis of this reaction involves 12 potential
wells and 2 sets of bimolecular products. The PES is shown
diagrammatically in Figure 14, which has four parts. There
are 13 CSEs in this reaction, one of which has an anoma-
lously large magnitude because of a very shallow well. The
others begin to merge with the continuum of IEREs at
temperatures as low as 1000 K, a factor that must be
accounted for correctly in the analysis. Nevertheless, rate
coefficients and product distributions for this reaction have
been obtained by Miller and Klippenstein.886

A plot of the total rate coefficient as a function of
temperature and pressure is shown in Figure 15. The curve

labeledk0 is the collisionless limit, and the one labeledk∞ is
the high-pressure limit, i.e., the rate coefficient for complex
formation (or the capture rate coefficient). Up to temperatures
of about 500 K, there is no difference betweenk0(T) and
k∞(T), indicating that any complex, once formed, ultimately
reactssthe products could be bimolecular or they could be
stabilized C6H6 isomers. At temperatures above 500 K, the
k∞(T) andk0(T) curves increasingly separate. In the absence
of collisions, many C6H6

* complexes redissociate to C3H3

+ C3H3 before they can go on to products. The primary effect
of collisions is to stabilize many of these nonreactive
complexes in the wells. Thus, the rate coefficient for any
finite, nonzero pressure lies somewhere between the two
limits, as shown on the plot.

Product distributions for the propargyl recombination
reaction are shown in Figure 16 as a function of pres-
sure for two temperatures, 300 and 2000 K. At any
temperature, only the bimolecular products (principally
phenyl + H) are formed at zero pressure. As the pressure
is increased slightly, the first stabilization products to
appear correspond to the complexes with the longest
RRKM lifetimes, typically, the isomers with the deepest
wells. In the present case, these isomers are benzene
(well VII), fulvene (well IV), and 2-ethynyl-1,3-buta-
diene (well VI). However, as the pressure is increased fur-
ther the C6H6 isomers located early on the reaction path
increasingly become the favored stabilization products. At
sufficiently high pressure, the only significant products are
1,5-hexadiyne (well I), 1,2,4,5-hexatetraene (well II), and
1,2-hexadiene-5-yne (well V), which are formed directly
from C3H3 + C3H3. As the temperature is increased, the
trends with pressure do not change, but the low-pressure
products tend to persist to higher pressures, as shown in

Figure 16. Phenyl+ H, which amounts to only 4% of the
products atT ) 300 K and a pressure of 1 Torr, is the
dominant product up to a pressure of almost one atmosphere
at 2000 K.

As the pressure on a gas increases, collisional energy trans-
fer processes equilibrate the reactant better, and the limiting
high-pressure rate constants from the master equation should
agree with transition state theory. This is actually a plateau
rather than a final limit, though, because eventually the rate
constants must become diffusion controlled and small at
ultrahigh pressures or in liquids.888-891 However, this physical
behavior can easily be masked by changes in the potentials
of mean force due to strong interactions, complexation, clus-
tering, condensation, caging, and solvation.888-892Supra-high-
pressure reactions can also exhibit effects due to transients
in the nascent distributions of energized molecules.893

3. Gas-Phase State-Selected Reactions and
Product State Distributions

In the last section, we discussed how to evaluate thermal
rate constants by QCT calculations or by VTST on an
adiabatic potential energy surface. However, thermal rate
constants are highly averaged quantities, and it is interesting
and often important to quantify the contribution of individual
states to the total rate. This is discussed for vibrational and

Figure 15. The total rate coefficient for C3H3 + C3H3 f products.

Figure 16. Product distributions for propargyl recombination as a
function of pressure. The roman numerals denote stabilization
products corresponding to the wells of Figure 14.
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rotational states in Section 3.1. When one considers excited
electronic states, one is faced with reactions that cannot be
adequately described by a single potential energy surface;
this kind of reaction is considered in Section 3.2.

3.1. Electronically Adiabatic Reactions
State-selected rate constants allow one to assess, for

example, how the excitation of a given normal mode affects
the dynamics of the chemical reaction. For some reactions
and some initial vibrational modes state-selected thermal rate
constants may be evaluated by a statistical vibrationally
diabatic model894 that assumes that the vibrational modes
preserve their characters along the reaction coordinate. This
model is obtained from harmonic CVT by replacing the
vibrational partition function for state-selected diabatic
vibrational modem in quantum statenm by exp[ - (1/2 +
nm)âpωm]. In other cases, a statistical-adiabatic theory is more
appropriate.895-898 Both approaches are probably only ap-
plicable to high-frequency modes; low-frequency modes tend
to be neither adiabatic nor diabatic. The most reasonable
approach for a high-frequency mode is to assume that it is
adiabatic, except at narrowly avoided vibrational state
crossings, from the start of the collision only until the system
reaches a region of high curvature of the reaction path899

because reaction-path curvature causes vibrational nonadia-
baticity.36,363,364,900,901

Duncan and Truong902 and Corchado et al.903 have
calculated state-selected rate constants for the Cl+ CH4 f
HCl + CH3 reaction. For this reaction vibrational excitation
of the C-H stretch and the lowest frequency bending mode
of CH4 accelerate the forward reaction, whereas excitation
of the CH3 umbrella slows down the reaction at temperatures
below 800 K and accelerates it for temperatures above 900
K. Similar results have been obtained by Espinosa-Garcı´a904

for the CH3 + HBr f CH4 + Br reaction, in accord with
quantum-mechanical calculations.

In the case of atom-diatom and diatom-diatom905 reac-
tions, it is possible to go further and analyze not only the
role played by asymptotic (reactant and product) states but
also the role played by individual levels of the quantized
transition states in both thermal and state-selected processes.
We define a quantized transition state as a dynamical
bottleneck with quantized levels. Then we write the canonical
rate constantk(T) in terms of the microcanonical onek(E)395

whereFR(E) is the reactant density of states per unit energy.
The microcanonical rate constant may be written as393,906

with

wherePRR′(E) is the completely quantum-number-resolved
reaction probability from reactant channelR to product
channel R′, where “channel” denotes a complete set of
quantum numbers for a reactant or product. Since the
reactants are bimolecular,R includes the orbital angular
momentum quantum numbers of relative translation as well

as electronic, vibrational, rotational, and spin quantum
numbers. Comparing eqs 3.1.2 and 3.1.3 to eqs 2.4.73 or
2.5.3 shows that transition state theory would be exact if
NµVT(E) were equal toN(E). However,NµVT(E) contains the
assumptions that we can separate out a classical reaction
coordinate (no tunneling) and that there is no recrossing at
the dynamical bottleneck defined by the minimum value of
the number of states along the reaction coordinate.

On the basis of the above equations, we can write the
microcanonical TST rate constant as365,715,716,907,908eq 2.5.3
whereN‡(E) is now the transition state approximation to the
sum over open quantized levels (states) at the transition state:

whereER̃ is a quantized energy level at the transition state.
Note that degenerate levels are included a number of times
equal to their degeneracy. To improve on the two ap-
proximations mentioned at the end of the previous paragraph,
we introduce a transmission coefficientκR̃ for each level of
the transition state so that393,566,567,909-912

For reactions with barriers and hydrogenic motion in the
reaction coordinate, the former approximation (no tunneling)
is often more serious than the latter (no recrossing). The
simplest way to include tunneling in the transmission
coefficient is with an effective parabolic potential for motion
along a reaction coordinates:

where kR̃
‡ is the negative effective force constant. The

transmission coefficient for potential (3.1.6) is given by512

whereWR̃ ) p|ωR̃|/2π with ωR̃ being the imaginary frequency
equal to (kR̃

‡/µ)1/2. We should keep in mind that the force
constant in eq 3.1.6 is an effective force constant, as is the
frequencyωR̃

‡. An approximate theory for estimating these
quantities has been presented913 based on a multidimensional
semiclassical theory of tunneling.

For simple reactions, the accurate cumulative reaction
probability for a given potential energy surface can be
calculated by converged quantum mechanical scattering, and
if one examines the microcanonical/J-resolved rate constant
kJ(E) defined such that

one can see clear structure in the rate constant that matches
well with the structure predicted by combining eqs 2.5.6,
3.1.5, and 3.1.7.395,566,567,909-912 These studies show clearly
that the quantized transition states control the structure of
the microcanonical rate constants as a function of energy.
Furthermore, they show that we can understand the state-
to-state dynamics with the highest possible resolution allowed
by quantum mechanics, namely, from a specific channel of
reactants to a specific level of the quantized transition state,
to a specific channel of the product.566,567,912

k(T) )
∫0

∞
exp(-âE)FR(E)k(E)dE

ΦR(T)
(3.1.1)

k(E) ) [hφ
R(E)]-1N(E) (3.1.2)

N(E) ) ∑
R
∑
R′

PRR′(E) (3.1.3)

N‡(E) ) ∑
R̃

Θ(E - ER̃) (3.1.4)

N(E) = ∑
R̃

κR̃(E) (3.1.5)

V ) ER̃ - 1
2
kR̃

‡s2 (3.1.6)

κR̃(E) ) 1/{1 + exp[(ER̃ - E)/WR̃]} (3.1.7)

k(E) ) ∑
J

(2J + 1)kJ(E) (3.1.8)
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The equations just presented may also be used to derive
the ground-state tunneling approximation introduced in
Section 2.4.4. According to eqs 3.1.1 through 3.1.3,k(T) is
an appropriately normalized sum of

This normalized sum is denoted in shorthand as

where ,.... denotes a generalized “average.” Next we
multiply and divide by the TST approximation tok(T), which
gives

where the denominator is another way to writek‡(T). In the
ground-state approximation, we replace the ratio of averages
by the ratio for a representative case.

The ground-state is a good representative case because
tunneling makes the largest relative contribution to the rate
constant at lowT (where the overbarrier process has a very
small Boltzmann factor), and at lowT the system must either
be in the ground state or in a state that is energetically similar
to the ground state. As the temperature is increased, more
states contribute, but alsoκ(T) f 1. Sinceκ(T) based on the
ground state also tends to unity asT increases, there is no
great harm in basing it on the ground state at all temperatures.
This is equivalent to setting

whereR̃ ) 0 denotes the ground state. If this is inadequate
one can use eq 3.1.5 with a less restrictive approximation.

Since this review is mainly concerned with thermal rate
constants, the above discussion is mainly concerned with
practical methods that are designed for calculating thermal
rate constants. For a more complete understanding of a
reaction, one must consider more than the valley around the
minimum energy path and the dominant multidimensional
tunneling paths. In particular, as stated by Sun et al.,914 “it
is necessary to study the actual motion of the atoms on a
reactive system’s PES.” This is generally done by trajectory
calculations, but wave packet simulations are becoming
reasonably common as well, especially for small systems.
The motion of such systems may take one far from the
minimum energy path,159,914-925 and several studies have
indicated the presence of interesting secondary pathways for
the formation of products in bimolecular reactions passing
over potential wells. These “roaming fragment” paths, where
a departing fragment abstracts an atom from the other
departing fragment, are not well described with standard
statistical treatments. In a detailed study, comparing direct
dynamics simulations with experimental observations, Marcy
et al. demonstrated that the reaction of O(3P) with CH3

produces H2 + HCO predominantly via the abstraction of
an H atom from formaldehyde (H2CO) by the departing H
atom.917 Recent related experimental and trajectory studies
have provided clear evidence for the existence of such a
“roaming atom” channel in the photodissociation of form-
aldehyde (i.e., H2CO f HCO + H f H2 + CO, where the
last step involves an H abstraction by the H from HCO).921

A related mechanism provides an explanation for some
old experimental observations of Kable and Houston for the
photodissociation of CH3CHO.924 Similarly, the roaming
fragment mechanism provides an explanation for the obser-
vation of H2O as a product in a number of O- + hydrocarbon
reactions.918 Preliminary results from a number of direct
dynamics simulations indicate that roaming fragment path-
ways are ubiquitous, apparently arising wherever the reverse
bimolecular reaction of the product fragments has a barri-
erless abstraction channel.925 In particular, roaming fragment
branching ratios of at least a few percent were observed in
direct B3LYP simulations of the C2H5 + O, NH2 + HO2,
HCCO + O2, and CH3 + C2H3 bimolecular reactions. The
branching between these roaming fragment channels and the
simple dissociation channels in the decomposition of closed
shell molecules may have an important effect on combustion
modeling, since in the one case two closed shell molecules
are formed, whereas, in the other case two radicals are
formed. Knyazev has provided a theoretical model for this
branching and applied it to the CH3 + O reaction.919

Discussions of the factors controlling vibrational and
rotational energy release and utilization in chemical reactions
are presented elsewhere.36,926-929

The last topic in this subsection is the prediction of final
vibrational-rotational energy distributions or the prediction
of the dependence of the reaction rate on rotational energy
or low-frequency modes of the reactant that are not expected
to remain adiabatic or diabatic even up to the dynamical
bottleneck or the first local maximum in the reaction-path
curvature. TST is not designed for these problems, and one
generally uses classical trajectories for these purposes.
Reviews of general principles36,926-928 and modern meth-
ods32,33,930,931 for trajectory calculations are available. A
discussion of the reaction CN+ H2 f HCN + H has been
presented as a case study where good agreement is obtained
between trajectory calculations and approximate quantum
scattering theory.34 Interesting recent case studies involve
OH + D2 f HOD + D932 and the H+ H2O reaction.933

Trajectory calculations have shown that very high excita-
tion energies may convert a reaction from being thermally
activated with a threshold to showing capture behavior such
as occurs in barrierless reactions.934

3.2. Electronically Nonadiabatic Reactions
Up to this point, we have employed the assumption that

the Born-Oppenheimer (adiabatic) approximation is valid,
which implies that a single potential energy surface controls
the reaction dynamics. However, there are many reactions,
called non-Born-Oppenheimer reactions or electronically
nonadiabatic reactions, in which dynamics does not proceed
on a single potential energy surface. These reactions include
many photochemical and chemiluminescent processes, in
particular, bimolecular reactions initiated in an electronically
excited state935,936 and those that produce an electronically
excited species (sometimes called chemiluminescent reac-
tions) and also unimolecular photodissociations and photoisom-
erizations.937-939 Just as for electronically adiabatic reactions
the ultimately preferred approach would be quantum me-
chanical scattering theory. Although quantum mechanical
methods are available,940 their cost has so far prohibited
converged calculations except for atom-diatom reac-
tions.941-943 Therefore, we will focus on semiclassical
methods944 in which the nuclear motion is treated classically,
whereas the transitions between electronic states are treated
by quantum mechanics.

PR(E) ) ∑
R′

PRR′(E) (3.1.9)

k(T) ) 〈〈PR(E)〉〉 (3.1.10)

k(T) )
〈〈PR(E)〉〉

〈〈PR
‡(E)〉〉

k‡(T) (3.1.11)

κR̃(E) ) κ0[E - (ER̃ - E0)] (3.1.12)
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We will begin by using the adiabatic potential energy
surfaces,Vγ, which, in the notation of eq 2.3.2, are defined
by

Note thatV1 was just calledV in earlier sections of this
review, except in eqs 2.4.49-2.4.51. For a general poly-
atomic system without symmetry, and neglecting spin-orbit
interactions, if there areN atoms, the potential energy
surfaces depend on 3N - 6 internal coordinates, and the
potential surfaces may intersect in a 3N - 8 dimensional
subspace;945 these are called conical intersections because
the surfaces separate like a conical bifunnel in the other two
internal degrees of freedom. Conical intersections, though
not required in the general case, should not be rare.946,947

The semiclassical methods make a distinction between the
quantum mechanical variablesr (electronic coordinates) and
the classical mechanical variablesR (nuclear coordinates).
The latter are described by classical trajectoriesR(t), and
the former are described by the time-dependent Schro¨dinger
equation

where Ψ and H(el) are respectively the electronic wave
function and electronic Hamiltonian, and an overdot denotes
a time derivative. Expanding the electronic wave function
in two electronically adiabatic eigenstates

where the coefficientaγ is an electronic amplitude yields
the following electron density

where * denotes a complex conjugate. Therefore, the
electronic density matrix is

Substituting eq 3.2.3 into eq 3.2.2 and using eq 3.2.5, the
Hermitian character ofF, the anti-Hermitian character ofd,
and the semiclassical approximation

for the time derivative yield the following coupled equations
for the time evolution of the density matrix elements:948

where Re denotes the real part and

with similar equations forF̆22 and F̆21, where

The matrix elementsdγγ′ are called the nonadiabatic coupling

matrix elements, orswhen multiplied byp/isthe nuclear
momentum couplings. These matrix elements are typically
of the order of magnitude of unity in atomic units,949 but
they are largenear conical intersections of the two states
involved, and they are infinitely largeat conical intersec-
tions.950-953 Far from conical intersections the effects of the
nonadiabatic terms are expected to be small enough that the
Born-Oppenheimer approximation is a good approxima-
tion,949 because the nonadiabatic matrix elements of eq 3.2.29
are multiplied byR4 or 1/µ,949 which are small in atomic units.
These considerations can be expressed in more mathematical
terms949 by making expansions in fractional powers of the
ratio of electronic to nuclear mass, a technique first intro-
duced by Born and Oppenheimer.58

The solution of the two coupled equations for the
electronic amplitudes by first-order perturbation theory gives
the Massey criterion954,955for adiabatic behavior, which may
be written in modified form as956,957

If ê12 . 1 the system can be considered adiabatic and the
Born-Oppenheimer approximation should be reasonable.
Nevertheless, even when the electronically nonadiabatic
transition probabilities are small, it is often important to be
able to calculate them.

The adiabatic wave functionsφγ and the adiabatic potential
energy surfacesVγ can be written as the eigenvalues of the
diabatic potential surface matrix

specifically

The transformation between adiabatic (φγ) and diabatic (ψγ)
wave functions is

where

with a mixing angleθ(R) given by

A variety of methods have been proposed for carrying out
diabatic transformations.274,953,958-972

The key assumption one makes when one uses a diabatic
representation is that the effect of the vector coupling
〈ψγ|∇R|ψγ′〉 may be neglected as compared to the effect of
the scalar couplingUγγ′. It is impossible, in general, to find
a transformation that makes all components of the vector
coupling zero over a finite region of space.973,974 But one
can find transformations that reduce it everywhere to the
order of 1 atomic unit or less, and it always gets multiplied
by a quantity like 1/µ, which is small in atomic units, or

Vγ ≡ VNR + Eγ
(el) (3.2.1)

ipΨ̇(r ,t) ) H(el)(r ,R)Ψ(r ,t) (3.2.2)

Ψ(r ,t) ) ∑
γ)1

2

aγ(t)φγ(r ;R(t)) (3.2.3)

|Ψ(r ,t)|2 ) ∑
γ)1

2

∑
γ′)1

2

aγ(t)aγ′
/ (t)φγ(r ;R(t))φγ′

/ (r ;R(t)) (3.2.4)

Fγγ′(t) ) aγ(t)aγ′
/ (t) (3.2.5)

d
dt

) R4 ‚∇R (3.2.6)

F̆11 ) -2Re(F21R4 ‚d21) (3.2.7)

F̆12 ) (F11 - F22)R4 ‚d12 + iF12(V2 - V1)/p (3.2.8)

dγγ′ ) 〈φγ|∇R|φγ′〉 (3.2.9)

ê12 ) (V1 - V2)/p|d12‚R4 | (3.2.10)

U ) (U11 U12

U12 U22
) (3.2.11)

Vγ ) 1
2
[(U11 + U22) - ((U22 + U11)

2 -

4(U11U22 - U12
2))1/2] (3.2.12)

φγ(r ;R) ) ∑
γ

ψγ′(r ;R)Tγ′γ(R) (3.2.13)

Tγ′γ(R) ) (cosθ(R) sin θ(R)
-sin θ(R) cosθ(R) ) (3.2.15)

tan 2θ(R) )
2U12

U11 - U22
(3.2.15)
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like Ṙ, which is small in atomic units in the chemical energy
range. Even at the high energy of 10 eV, the speed of a
proton is only 0.02 atomic units.

Although there is no unique way to specify the diabatic
representation, it is useful to define it such that the
momentum coupling has a negligible effect and that the
diabatic electronic wave functions are smoothly varying
functions ofR. The adiabatic states diagonalize the electronic
Hamiltonian but are coupled by the nuclear momentum,
whereas diabatic states have no nuclear momentum coupling
although they are coupled by off-diagonal elements (U12) of
the electronic Hamiltonian. In the adiabatic representation
the coupling is given by a nonsmooth vectord12, whereas it
is a smooth scalar in the diabatic representation; the vector
coupling is less convenient than the scalar one, but the
adiabatic representation has the advantage that one can
optimize the adiabatic wave functions by the variational
principle. The advantages of both representations may be
combined by defining diabatic basis sets in terms of adia-
batic basis sets using orthogonal or unitary transforma-
tions.957,958,960,969,971,972

If we assume a 1D model in whichU11 crossesU22 with
U12 approximately constant, we obtain the Landau-
Zener975-977 one-way transition probabilityPLZ, which is the
single-passing probability of a nonadiabatic transition from
the adiabatic state 1 to the adiabatic state 2, and is given by

where Z is the component ofR along the path, and all
quantities are evaluated at the crossing point. Important
further improvements of the Landau-Zener model were
presented in subsequent years.978-983

Another general class of models is appropriate for the
Rosen-Zener-Demkov case where the two diabatic surfaces
do not cross.984,985Although such simple models are useful
for showing the nature of the dependence of transition
probabilities on key variables, they are too simplified to
provide quantitative results for real systems, and the best
available option for practical work is nonadiabatic trajectory
calculations.

A key reason multidimensional trajectory calculations are
required is the prevalence of conical intersections, which are
intrinsically multidimensional. When one encounters a local
minimum (along a path) of the gap between two adiabatic
potential energy surfaces, almost always this will be because
one has passed near a conical intersection, rather than a true
avoided crossing corresponding to a finite local minimum
in the gap.947 In an adiabatic representation, the nonadiabatic
coupling becomes singular at conical intersections,950,951but
this singularity can always be removed by transformation to
a diabatic representation.274,949-953,969,970,986Furthermore, one
can show949 by expansion58 in powers ofme/µ, whereme is
the mass of an electron andµ is a nuclear mass, that in
normal molecular situations, apart from the singularity, the
effect of the rest of the nonadiabatic coupling can be expected
to be small in the Born-Oppenheimer sense. Therefore, the
nonadiabatic coupling is often dominated by small regions
around a conical intersection (regions in which the singular
leading term in the nonadiabatic coupling dominates the other
terms). Furthermore, in high-symmetry cases or when only
the lowest-energy part of the seam of conical intersections

is important, one can understand the interactions between
the electronic states in terms of an easily obtained274,951,969,970

diabatic basis. This provides a route to simple models as
well as to quantitative treatments. Even when one needs more
complicated algorithms to obtain diabatic states that remove
all the singular coupling,972 diabatic states still often provide
useful models as well as the starting point for quantitative
dynamics.

The conversion of electronic energy to nuclear-motion
energy by decay from an electronically excited singlet or
doublet state to the ground electronic state is called internal
conversion, radiationless decay, or an electronically non-
adiabatic transition. Internal conversion is often the critical
first step in photochemical processes. The proposals, in
various forms, by Teller,946,987Zimmerman,988 and Michl989

that internal conversions in regions close to conical intersec-
tions are characteristic steps in many photochemical reactions
was one of the first steps forward in describing photochemi-
cal processes in terms of geometric features in excited-state
potential energy surfaces.990-993 Decay of electron excitation
energy in the vicinity of a conical intersection involves
entangled electronic and nuclear motion on a time scale of
tens of femtoseconds and has been studied in a variety of
systems.994-1030

However, one must also be careful not to oversimplify.
First of all, the most critical region is the region near the
conical intersection seam in which the singular
terms274,949-951,969,970 dominate the coupling, not just the
conical intersection seam itself. Second, the region around
the lowest-energyconical-intersection point may be insuf-
ficient even for a zero-order picture1031-1033 As an analogy,
it is worthwhile to compare the situation to that for thermally
activated single-surface reactions, where we know that
transition state theory, which emphasizes the low-energy
region around a saddle point or the lowest energy portion of
a variational transition seam, is very useful when reaching
the transition state is a rare event in the free energy sense.1034

A similar approach can be applied to certain electronically
nonadiabatic reactions.1035 However, returning to the elec-
tronically adiabatic case, if one wants to calculate branching
ratios when the total energy significantly exceeds the energy
of the controlling dynamical bottlenecks,413 then a transition
state picture may be less appropriate, and one needs to invoke
less reliable statistical assumptions.413,717-720,1036 Closely
related problematic systems involve potential energy surfaces
where dynamical branching is controlled by trajectories
leaving a plateau region in various directions or by trajec-
tories that reach points of no return from unequilibrated
regions of phase space.417,418,959,1037-1039 These kinds of
scenarios are probably even more prominent in electronically
nonadiabatic systems, where the total energy is often
sufficient to reach large portions of one or more conical
intersection seams rather than just their lowest-energy part.
In such cases one needs to map out the characteristics of
the seam or seams more fully. Even in such cases, statistical
theories are available,1040-1047 but they are not always valid
because the probability of decay at one or another portion
of the seam may be determined by initial conditions (as
determined, for example, by Franck-Condon factors) or by
inertial or other dynamical factors, not just by statistics. Thus,
one requires trajectory calculations, such as the surface
hopping or decay-of-mixing methods discussed below, or
wave packet calculations.

PLZ ) 1 - exp[- 2πU12
2

pŻ|dU11

dZ
-

dU22

dZ |] (3.2.16)
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Finally, it is important to keep in mind that although
conical intersections are not rare, very many interesting
processes do not involve them because the seam of diabatic
crossing does not intersect a seam of zero diabatic coupling
at an accessible geometry or because the diabats do not cross.
Nevertheless, a diabatic picture can still be very useful.
Furthermore, in cases such as this, multidimensional dynam-
ics calculations (nonadiabatic trajectories or wave packets)
are very important because 1D models of the dynamics do
not appear to be generally valid even in the absence of
conical intersection.941

The use of diabatic potential energy surfaces is expected
to greatly ease the fitting of potential energy surfaces because
(i) diabatic surfaces are much smoother than adiabatic ones
and (ii) the couplings in diabatic representations are smooth,
scalar functions, whereas in adiabatic representations they
are rapidly varying, singular, vector functions. However, one
promising approach to fitting the adiabatic surfaces, at least
for exploratory dynamics, is the SRP method (see discussion
in Section 2.3), which has been extended to non-Born-
Oppenheimer problems by Martı´nez-Nuñez et al.1048

Nonadiabatic trajectory methods based on ensembles of
independent trajectories are especially relevant in the search
for simple guiding pictures because they lead to visualizable
dynamics. Two standard methods based on classical trajec-
tories are the trajectory surface hopping (TSH)957,1049-1054

approach and Ehrenfest method or self-consistent potential
(SCP)956,957,1054,1055approach. The TSH method was initially
suggested by Nikitin1049 and Tully and Preston.1050 In these
early studies, the trajectories were propagated on the adiabatic
surfaces, and probability for trajectories to hop was evaluated
by the Landau-Zener model. A more complete theory in
which the trajectories are coupled to eqs 3.2.3 for arbitrary
surface characteristics was proposed later1051and successively
refined1052,1053,1056-1059 In general, trajectories may be propa-
gated on either the adiabatic or diabatic surfaces.

Tully’s fewest switches scheme956,1052is particularly ap-
pealing because it employs the fewest number of switches
necessary to obtain ensemble-averaged consistency between
the quantum and classical degrees of freedom in the limit of
V1(R) ) V2(R). In this method, self-consistency is ac-
complished by propagating an ensemble of trajectories on
the diagonal potential matrix elements, with each trajectory
being independent of the others, and with the probability
that a trajectory that is propagating on one potential surface
will hop to another being determined such that the fraction
of trajectories propagating on surfaceγ is (if energy
conservation permits) given byFγγ.

A serious problem with the TSH method is that hops from
the lower surface to the upper surface can be forbidden by
conservation of energy or momentum (frustrated hops), and
this destroys the self-consistency of the coupled treatment
of electronic and nuclear motion.1060 These frustrated hops
have two causes:957 (1) the original fewest-switches method1052

does not allow tunneling into a new electronic state, which
is a consequence of a classical trajectory approach, and (2)
it does not properly treat electronic state dephasing, which
is a result of the formulation of the hopping probability. The
frustrated hops associated with (1) are considered physically
meaningful and the transition between states should be
allowed, whereas the hops associated with (2) are not
physically meaningful and should be ignored. New surface
hopping methods identify the frustrated hops associated with
tunneling and attempt to improve the self-consistency of the

method by allowing nonlocal surface hops.1057,1058 This
problem is also partially ameliorated by methods that
propagate wave packets instead of trajectories,1061-1065

although these are more expensive.
The semiclassical Ehrenfest method is quite different; in

particular, in this method the effective PES is given by the
expectation value of the electronic Hamiltonian computed
with the current density matrix, with no hops. Because the
trajectories are propagated on this averaged potential, the
results are independent of the choice of representation
(adiabatic or diabatic) of the electronic wave function. This
is an important advantage because the surface hopping
methods can be very inaccurate if one chooses to use the
wrong representation. The most apppropriate basis in which
to carry out the calculations would be the “pointer” ba-
sis,1066,1067but this is usually not known. An approximate
rule, called the Calaveras County criterion, for determining
this basis has been presented.1068

The biggest drawback of the semiclassical Ehrenfest
method is that trajectories propagating on an average surface
mayfinishon an average surface, which corresponds to being
in a mixed electronic state that is not an allowed final state
because it is not an eigenvalue of the asymptotic electronic
Hamiltonian. In such a case the final electronic, vibrational,
rotational, and translational energies of the products are not
realistic. This problem has been solved by including decay-
of-mixing terms in eqs 3.2.7 and 3.2.8.1069,1070The mixed
state is thereby resolved into one or another pure electronic
state as the trajectory leaves the region of interstate coupling.
Adding the decay of mixing terms makes the trajectories
depend on representation (adiabatic or diabatic), but the
dependence is small.

The self-consistent decay of mixing (SCDM) method948

and the coherent switching decay of mixing (CSDM)
method1071 both incorporate such decay terms, but they
require only about the same amount of computational effort
and data as the other methods we have discussed. The decay
of mixing rate must be based on two different kinds of
consideration; it has a physical component corresponding to
physical population dynamics and dephasing,1072 but this is
not identical to the algorithmic decay rate required in order
that an ensemble of trajectories with a specific semiclass-
ical prescription for electronic state switching and nuclear
motion will correctly simulate a quantum mechanical wave
packet.948,1071 The decay of mixing algorithm is based on
both considerations. It has performed quite well in compari-
son to accurate quantum dynamics for electronically nona-
diabatic atom-diatom reactions,948,1067,1071,1073,1074and the
SCDM and CSDM are the most accurate available nonadia-
batic trajectory methods.

There is a fundamental difference between nonadiabatic
coupling in internal coordinates (vibronic interactions, as
discussed so far) and nonadiabatic coupling caused by overall
rotation. Most attention has been paid to the former. The
terms in the rotational kinetic energy that couple internal
motions such as vibrations and electronic degrees of freedom
are called Coriolis terms. In polyatomic molecules, electronic
Coriolis coupling has been much less widely studied than
vibronic interactions, although the surface hopping method
can include this kind of transition.1075 The different mech-
anisms have been compared elsewhere.957,983,1076

The discussion has centered so far on spin-conserving
processes, which are often promoted by intersections occur-
ring in at most 3N - 8 dimensions. In contrast, singlet triplet
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intersections may occur on a (3N - 7)-dimensional seam.
Electronic structure calculations may be used to characterize
the intersections,1077-1082 especially by calculating the mini-
mum on the seam of surface crossing (MSX). Dynamical
theories for predicting the probabilities of spin-forbidden
processes have been developed.1078,1080,1081,1083

4. Condensed-Phase Bimolecular Reactions
Many reactions of interest occur either in solution or at a

gas-surface interface. In some reactions, the solvent or the
surface has only a small effect, but usually it has a large
effect. For instance in liquids, the rates of unimolecular
reactions between nonpolar species are sometimes roughly
independent of the type of solvent, but in the case of polar
molecules the rates may be speeded up or slowed down by
large factors in liquid solution as compared to the gas phase,
even for nonpolar solvents. One example is the Claisen
rearrangement of the polar molecule allyl vinyl ether to
4-pentenal, which is speeded up by about 3 orders of
magnitude in aqueous solvation as compared to the gas
phase; even in the nonpolar solvent hexadecane it is speeded
up by about one order magnitude.1084,1085Bimolecular reac-
tions involving ions and polar molecules generally depend
strongly on the solvent. The key consideration is often the
difference in solvation free energy of the transition state and
the reactants, but in bimolecular reactions one must also
consider long-range interactions and gradients of concentra-
tion. Reactions in solids show similar effects although the
slower diffusion through solids is often a dominant consid-
eration. The effect of a solid surface, such as ice, a metal
oxide, or a metal, on reactivity is often so large that the
surface is considered to be a catalyst. Processes at metal
surfaces often show strong effects of Born-Oppenheimer
breakdown.1086 Overviews of the application of transition
state theory to liquid-phase and solid-gas interface reactions
are available elsewhere,347,349,356,1034,1087-1098and key theoreti-
cal developments are summarized in the context of this
review in the following two subsections.

4.1. Reactions in Liquids
In general, a reaction in solution can be modeled by the

following mechanism

where AB is the transient complex formed by the encounter
of the two molecules. The rate of this reaction may be derived
by applying the steady-state condition to the complex, which
yields

A typical value ofkD is 4 × 109 M-1 s-1. If k2 . k-D the
reaction is controlled by diffusion. In the opposite case of
k-D . k2 the bimolecular reaction rate is

whereK ) kD/k-D. When eq 4.1.3 holds the existence of the
complex becomes irrelevant (the numerator ofK exactly
cancels the denominator ofk2), which is a special case of
the general rule that an intermediate before the rate-
determining step has no effect on the rate.

When the reaction is diffusion controlled, the concentration
of B molecules in the vicinity of A molecules becomes
depleted.1099,1100The equation governing the diffusion of B
molecules toward A is Fick’s first law of diffusion. The
number of B molecules per unit time reaching a spherical
surface of area 4πR2 at a distanceR from A is

whereDAB is the binary diffusion coefficient. By solving eq
4.1.4 with an appropriate boundary condition1101 at r ) σcol,
whereσcol is a collision diameter, one can again derive eq
4.1.2 where

Equation 4.1.5 is appropriate in the case where intermo-
lecular forces are neglected forR > σcol. If V(σcol) cannot
be neglected, as for the reaction of two ions of chargeqA

andqB for which

whereε is the dielectric constant, then eq 4.1.2 is replaced
by

For slow reactions, there should be a substantial barrier
for the second step of reaction 4.1.1, and thereforekD .
k2 exp[-âV(σcol)], and eq 4.1.7 reduces to

This equation has been used to interpret reactions between
ions. The substitution of eq 4.1.6 into eq 4.1.8 allows one to
obtain an effective value ofσcol by plotting the logarithm of
k versus 1/ε.

Whenk2 , k-D, reactions in solution can be modeled by
TST. Even when this relation does not hold, TST may be
used to modelk2. Using the formalism of eq 2.2.4, we can
express the entire effect of solvation on the reaction rate
(eitherkeq or k2) as follows:

where l and g denote the liquid-phase and gas-phase
environments, respectively. With this fundamental equation
available to organize the discussion, we can distinguish three
levels of dynamical theory for calculating bimolecular
reaction rates in liquid solutions. These levels will be called
separable equilibrium solvation (SES), equilibrium solvation
path (ESP), and nonequilibrium solvation (NES.)

A key result needed to relate condensed-phase thermo-
chemistry to the gas phase is the equation for the solvation
of a single substance.1097,1102

A + B{\}
kD

k-D
AB98

k2
Products (4.1.1)

k )
kDk2

k-D + k2
(4.1.2)

keq ) Kk2 (4.1.3)

J ) 4πDABR2d[B]
dR

(4.1.4)

kD ) 4πσDAB (4.1.5)

V(σcol) )
qAqB

εσcol
(4.1.6)

k )
kDk2e

-âV(σcol)

kD + k2e
-âV(σcol)

(4.1.7)

k ) k2 exp[-âV(σcol)] (4.1.8)

∆∆Gact ≡ Gact
o (l) - ∆Gact

o (g) (4.1.9a)

) ∆GT
‡,o(l) - ∆GT

‡,o(g) - RT ln [γ(T,l) - γ(T,g)]

(4.1.9b)

GT
o(l) ) GT

o(g) + ∆GS
o(T) (4.1.10)
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where∆GS
o is the standard-state free energy of solvation of

the substance in question. Therefore, the free energy change
of eq 2.1.7 becomes

where the first delta in the last term, like that in eq 2.1.7,
denotes the difference between product and reactants, and
the second delta in this term, like the one in eq 4.1.10, refers
to the solvation process. By the quasithermodynamic ana-
logue we also have

where∆‡ denotes the difference between the transition state
and reactants.

Equation 4.1.12 also applies to generalized transition states.
However, to calculate transmission coefficients we need not
just the free energy of activation profile but also effective
potentials for estimating tunneling contributions and recross-
ing factors. For this purpose, we use the canonical mean
shape approximation1103

whereV(R) is the gas-phase potential energy of the solute,
R denotes the collection of all the atomic coordinates of the
solute,W(R) is the effective potential of the solute in the
liquid phase, and∆GS

o(R,T) is the standard-state free energy
of solvation of the rigid solute. In practice, one approximates
eq 4.1.13 by the zero-order canonical mean shape ap-
proximation1103

The right-hand side of eq 4.1.14 is called1104 the potential
of mean force. Thus the zero-order canonical-mean-shape
approximation consists of setting the effective potential equal
to the potential of mean force.

If the solute hasN atoms, the potential of mean force
W(R,T) is a function of 3N coordinates and corresponds to
averaging the solvent forces over a thermal ensemble of
solvent coordinates. Another useful quantity is the 1D
potential of mean forceW(z) which corresponds to averaging
over not only the solvent but also 3N - 1 of the solute
coordinates, leaving a function of a single pre-selected
coordinate, usually taken as a physically motivated reaction
coordinate. Most generallyz could be a function not only of
the 3N solute coordinates but also of solvent coordinates; it
could even be a collective solvent coordinate.

In the SES approximation,1105one calculates the first term
of eq 4.1.9b by using the approximation

for reactants, whereRe is the equilibrium gas-phase geom-
etry, and by the approximation

for transition states, whereR‡ is the gas-phase transition-
state geometry. For the second term of eq 4.1.9b, the effective
potential used to calculate the transmission coefficient is

obtained by eq 4.1.13 or eq 4.1.14, and the transmission
coefficient is based on the gas-phase minimum energy path.
Separable equilibrium solvation often provides quite useful
results with a minimum of effort.1106

The separable assumption for the solute reaction path is
removed in the ESP approximation.347,611,1092,1103,1105In
particular, one introduces eq 4.1.14 at all stages of the
calculation. Thus, for example, one finds a new minimum
energy path usingW(R) instead ofV(R).

The SES and ESP approximations assume a clear separa-
tion of solute and solvent in that the generalized transition
state dividing surface is defined entirely in terms of solute
coordinatesR. This restriction is sometimes important, and
even the best dividing surface defined in this way may
involve significant amounts of recrossing. This effect is called
solvent friction or nonequilibrium solvation. There are several
possible ways to treat this kind of effect, the most obvious
of which involve treating some or all of the solvent
coordinates explicitly on the same footing as the solute.
Treating a few solvent molecules explicitly and the rest
implicitly by means of∆GS

o(T) or ∆GS(R,T) functions is
called a mixed discrete-continuum model1107-1110 a semi-
continuum model,1110or a cluster-continuum model.1111The
collection of the solute and all explicit solvent molecules is
called the supermolecule. A serious problem with this
approach is that the number of conformers grows very rapidly
as one adds more solvent molecules to the supermolecule
due to the large number of solvation sites and solvent
molecules orientations, and the potential surface becomes
very anharmonic, so it becomes impractical to compute solute
partition functions by the usual methods. This problem can
become serious with even as few as two or three solvent
molecules.

Another approach to nonequilibrium solvation is to include
collective solvent coordinates (as opposed to actual atomic
coordinates of individual solvent molecules) in the solute
(or supermolecule) Hamiltonian.1112-1120 Such collective
coordinates can represent, e.g., the electric polarization of
the solvent, which is not necessarily in equilibrium with
solute motion. The collective solvent approach may be used
to derive a simple approximation, called Grote-Hynes
theory,1093,1095,1121to the nonequilibrium solvation effect based
on the friction on the reaction coordinatez in the vicinity of
the maximum of the 1D potential of mean forceW(z).
Typically the Grote-Hynes transmission coefficient is in the
range 0.3< Γ < 1. Chuang and Truhlar1119made a quantized
VTST study of the reaction H+ CH3OH f H2 + CH2OH
in water at 298 K with 21 solute degrees of freedom and
one collective solvent mode. They calculatedΓfriction = 0.4
without tunneling andΓfriction = 0.5 with tunneling.

A question that arises is whether nonequilibrium solvation
is included in the free energy of activation or in the
transmission coefficient.1098 When a solvent degree of
freedom is important for specifying the least-recrossed
dividing surface, but it is not included in the computational
reaction coordinate, the effect shows up as a reduced
transmission coefficient. If the effect is recognized, though,
and coupled motion is included in the reaction coordinate,
then the effect shows up in the free energy of activation.

Another approach to nonequilibrium solvation has been
presented by Warshel and co-workers, first for electronically
nonadiabatic electron-transfer reactions680,1122and then for
electronically adiabatic reactions.308,1123-1125In this approach,
the solvent is included in the reaction coordinate, even for

∆GT
o(l) ) ∆GT

o(g) + ∆∆GS
o (4.1.11)

∆GT
‡,o(l) ) ∆GT

‡,o(g) + ∆†∆GS
o (4.1.12)

W(R) ) V(R) + ∆GS
o(R,T) + â

∂GS
o(R,T)

∂â
(4.1.13)

W(R,T) ) V(R) + ∆GS
o(R,T) (4.1.14)

GT
o(l) ) GT

o(g) + ∆GS
o(Re,T) (4.1.15)

GT
‡,o(l) ) GT

‡,o + ∆†∆GS
o(R‡,T) (4.1.16)

Modeling the Kinetics of Bimolecular Reactions Chemical Reviews, 2006, Vol. 106, No. 11 4569



electronically adiabatic reactions, as an electronically diabatic
energy gap1120 computed from an empirical valence bond
representation of the potential energy surface. This approach
has advantages when nonequilibrium solvation effects are
large.

Finally, there are cases where it is necessary to treat the
whole system explicitly. Two frameworks are available for
calculating rate constants in such cases. One is called
ensemble-averaged variational transition state theory (EA-
VTST).1126-1130 This method lends itself well to including
quantum effects; for this purpose the system is divided into
a primary zone and a secondary zone, and quantum effects
are included in the former. In a first stage one uses a pre-
selected reaction coordinatez, called a distinguished reaction
coordinate, to compute a 1D potential of mean forceW(z).
Then one calculates the reaction rate by eq 2.2.3 with the
approximation:

where the maximum corresponds to the transition state and
the minimum corresponds to reactants. The theory is general
enough to accommodate any reasonable choice of reaction
coordinate for z; note though that eq 4.1.17 is only valid for
a planar density surface, which implies a rectilinear reaction
coordinate, as assumed in eq 2.4.16. For a more general
dividing surface, there is an additional term,378-381 which is
often neglected (see Section 2.4.5). One can incorporate
tunneling in this theory and allow for the participation of
secondary-zone coordinates in the reaction coordinate by
stages that employ a static-secondary-zone (SSZ) approxima-
tion or an equilibrium-secondary-zone (ESZ) approxima-
tion.1126,1129,1130

Equation 4.1.17 has been used frequently, in a variety of
contexts, to study organic bimolecular reactions in liquid
solutions,1106,1131-1145 with various levels of approximation
in the calculation ofW(z). For example,z may be a
distinguished reaction coordinate, or the reaction coordinate
may be optimized in the gas-phase or in the liquid-phase
solution. Furthermore, one can distinguish various degrees
of coupling between the solute and the solvent in modeling
the potential energy surface, which is discussed further
below. In addition, dual-level methods originally developed
(see Section 2.4.5) for gas-phase calculations may be used
to improve the accuracy in an efficient way.1144

In some cases, when it is not clear a priori how to choose
the progress variablez, one first explores the detailed
dynamical mechanism by calculating the potential of mean
force as a function of two1129,1146-1148 or more1145,1149

variables.
An example of a complicated reaction coordinate that can

be used to describe a complex process is the modified-center-
of-excess-charge reaction coordinate developed to study long-
range proton-transfer kinetics.1150

Although thorough coverage of enzyme dynamics is
beyond the scope of the present review, we note that there
has been considerable recent progress in including tun-
neling489,1098,1126-1130,1151-1156 and recrossing489 in the trans-
mission coefficient even for reactions as complicated as
enzyme-catalyzed reactions.

The second general formalism for calculating reaction rates
when a collection of paths and the entire system must be
explicitly considered is transition path sampling,689,690,1157-1159

in which one statistically samples an ensemble of reaction

paths without defining a progress coordinate such as the
coordinate used in umbrella sampling. Having found the
ensemble of paths, one calculates the transmission coefficient
and reaction rate as a flux correlation function (see Section
2.4.8). This formalism, like EA-VTST, is particularly
motivated by the fact that liquid-phase reactions involve a
myriad of saddle points, often differing only in terms of
solvent conformations, and each saddle point has its own
minimum-energy path. There is an ensemble of system
trajectories in the valley corresponding to each saddle point
and associated minimum-energy path, and this ensemble may
be treated by VTST, but there is an even more diverse
ensemble associated with the ensemble of saddle points and
minimum energy reaction paths. EA-VTST and transition
path sampling provide statistical mechanical algorithms for
including the contributions of trajectories sampling this broad
ensemble of reaction valleys.

Another important dynamical issue is decoherence, whose
effects have recently been elucidated by Han and Brumer1160

for a model collinear reaction in a solvent that causes
decoherence but not solute-solvent energy transfer. The
effect of the solvent is to increase the energy dispersion in
the solute. In the tunneling regime (below threshold), this
increases the fraction of the wave packet with energy above
the barrier and hence increases the reaction probability.

For reactions in liquid-phase solution, progress has
required not only new formulations of the dynamics but also
new methods for calculating the potential energy surface.
In some cases, one uses a model for the potential energy
surface and obtains the required free energies by statistical
averaging. In other cases, for example, when using continuum
approximations for the solvent,1097one directly calculates the
free energy of solvation without an explicit model for the
potential energy of solvation. Explicit models of the solvent,
especially molecular mechanics,1161 are also in widespread
use, and the coupling between the degrees of freedom treated
by molecular mechanics and those treated by quantum
mechanics may be handled at various levels of sophisti-
cation.1162-1165 The effective fragment model1166 provides a
way to model ab initio solvation effects in a computationally
efficient way, and it has been validated for the bimolecular
Menshutkin reaction in aqueous solution.1167

Electron transfer reactions present a very special class of
reactions in that they may be electronically nonadiabatic and
may show large nonequilibrium effects.1112,1168-1172There is
a considerable amount of interesting work using theoretical
approaches originally developed for electron transfer to treat
broader classes of reactions.347,1120,1122,1125,1171-1183

4.2. Reactions on Surfaces and in Solids
Adsorption is the process of attachment of particles to a

surface; the inverse process is desorption. For a gas molecule
A(g) (adsorbate), which is binding to the surface S (the
adsorbent), the processes of adsorption and desorption can
be represented by the chemical equation

and its reverse, respectively. The molecules of the gas can
attach to the surface in two ways: (1) by physisorption, i.e.,
the molecules of A are bound to the adsorbent by van der
Waals interactions, which in general are weak, and (2) by
chemisorption, that is, the molecules stick to the surface by
forming chemical bonds. In general, the association to form

∆Gact(T) ) max
z

W(z) - min
z

W(z) (4.1.17)

A(g) + S f A‚S (4.2.1)
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a physisorption complex has a loose transition state, and
VTST is needed to define a transition state, whereas
chemisorption reactions often (not always) have tight transi-
tion states, and the saddle point provides a starting point for
identifying the transition state.

Bimolecular chemical reactions at a surface1184-1186 can
take place by two mechanisms,1184,1187,1188the Langmuir-
Hinshelwood (LH) mechanism

or the Eley-Rideal (ER) mechanism

Although the LH mechanism is very common,1189-1198 both
theoretical1199-1212 and experimental1187,1213-1220 studies
show that the ER mechanism is also possible, and it tends
to lead to higher energy release because the B-S chemi-
sorption energy needs not be overcome. An intermediate
mechanism is possible in which B is partially accommo-
dated to the surface (trapped as “hot precursor”) but not
completely equilibrated to it prior to reaction.1221-1225

Both wave packet1201,1203,1205,1211,1212,1223 and trajec-
tory1199,1200,1202,1204,1206-1209,1223-1225 calculations have been
used to study the ER and hot precursor mechanisms.
Electronic structure calculations can be very helpful in sorting
out the mechanisms.1226,1227

Extended LEPS potentials have been used recently for
several purposes such as the study of reactions of H2 and D2

at a Cu(001) surface.1228-1230The Shepard method, discussed
at length in Section 2.3, has also extended to molecule-
surface interactions.1231,1232

For the case of diatomic molecules interacting with a solid
surface, it is possible to build a six-dimensional PES as a
function of two position vectors; one of them,R(X,Y,Z),
points from the molecular center to some point over the
surface (with theZ axis chosen perpendicular to the surface),
whereas the other vector,r , usually defined in spherical
coordinates (r,θ,φ), indicates the position of atomB relative
to atom A in the AB diatomic molecule. The usual procedure
is to fix X, Y, θ, and φ, so the molecule remains in the
particular configuration with respect to the surface, and
several ab initio points are calculated on a grid of different
r andZ values. The procedure is then repeated for different
X, Y, θ, φ configurations. Busnego et al.1233 developed the
corrugation-reducing procedure (CRP) that allows an efficient
and accurate interpolation of this 6D PES. Specifically, the
potential is divided into three parts:

where I6D is an interpolation function that contains all the
formation with the exception of the atom-substrate interac-
tions, which are incorporated inJA

3D and JB
3D, respectively.

The success of the CRP is based on the smoothness ofI6D

when compared with the highly corrugatedV6D potential.
The functionJA

3D and JB
3D are constructed by applying the

CRP again, i.e.,

where I3D is the atomic equivalent ofI6D, and Q2D(Ri)
represents the interaction between the adsorbing atom and

the ith atom of the surface. The electronic structure energies
may be calculated by DFT with a generalized gradient
approximation. This procedure has been used to build the
PESs of H2 + Pd(111),1196,1233 H2 + Pt(111), H2 +
Cu(100),1234,1235H2 + Pt(211),1236 and H2 + Ru(0001)1237

systems.
Variational transition state theory with multidimensional

tunneling is well suited for the study of molecular reactions
at surfaces.1024,1197,1238

Chemical reaction dynamics have also been studied at
liquid surfaces.1239-1241

4.3. Tunneling at Low Temperature
At low enough temperature, tunneling often causes ex-

ceptionally large amounts of concave curvature in Arrhenius
plots. In analyzing this, some workers assume that the
tunneling contribution is independent of temperature.1242

Unfortunately, this is not true. The rate constant becomes
independent of temperature when all reaction occurs out of
the ground state. Since all medium-sized or large molecules
have low-frequency modes, once must go to very low
temperatures (significantly below 100 K, maybe even below
10 K, depending on the molecule and the process) for all
the molecules to react out of the ground state.

We may distinguish three regimes:
Regime I: Most of the reaction occurs from the ground

state of reactants. We can call this the ground-state tunneling
regime. The rate constant is independent of temperature in
this regime.

Regime II: Most of the reaction occurs by tunneling but
out of a range of possible initial states. We can call this the
activated tunneling regime. With very rare exceptions, this
is the regime we need to be concerned about when we
consider tunneling in organic chemistry. The rate constant
is not independent of temperature in this regime, even if more
than 99% of the reactive events occur by tunneling.

Regime III: Most of the reaction occurs by an overbarrier
process.

One could also say that there are three components in the
rate constant: tunneling from the ground state, tunneling
from other states, and the overbarrier component. At low
enough temperature, any reaction must occur in regime I,
but of course the solvent may freeze before one gets there.
If one considers reaction on a solid surface or simple
reactions within solids (such as low-temperature matrices),
this freezing does not get in the way of watching the
transition from III to II to I as the temperature lowers. Then
it can be shown that the rate constant does become a constant
at low enough temperature, although this is very rarely
observed.1243 What is usually observed, both under these
conditions and at higher temperatures in liquids, is a concave
Arrhenius plot where (as the temperature is lowered) we see
a flattening that corresponds to the beginning of an approach
to a constant value.

We can describe this at a higher level of mathematical
precision as follows. If the Arrhenius plot is straight at high
T (an approximation, but often one we are willing to make,
at least in the present context) and is straight and constant
in the low-T limit, then it has no curvature (a straight line
has a zero second derivative) in either of these limits. Some
place between these two regimes, it must have the maximum
absolute value of the curvature. We can call this the transition
temperature. This isnot a point to associate with the
transition from tunneling not being important to tunneling

B‚S + A‚S f products (4.2.2)

B(g) + A‚S f products (4.2.3)

V6D ) I6D + JA
3D + JB

3D (4.2.4)

J3D ) I3D + ∑
i)1

n

Q2D(Ri) (4.2.5)
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dominating (III f II); actually this is the transition from
regime II to regime I.1244Since tunneling dominates in regime
II, this transition temperature is not the onset of tunneling.
Tunneling is important at a much higher temperature than
this. For example, hydrogen transfer reactions (and also
proton and hydride transfer reactions) with barriers of a few
kcal/mol or higher are almost always dominated by tunneling
at room temperature.

All real Arrhenius plots are curved. If a reaction is
measured over a narrow temperature range, the curvature of
the Arrhenius plot will often be less than experimental errors
and so not be observable. A higher-than-usual curvature at
low temperature is often an indication of tunneling, and it
may even be a strong indication, but this is a quantitative
issue, not simply an issue of equating curvature with
tunneling. Reactions with observable curvature are sometimes
proceeding mainly over the barrier (for example, Arrhenius
plots are often quite curved at combustion temperatures due
to anharmonicitysnot tunneling); and reactions without
observable curvature are often nevertheless proceeding
mainly by tunneling.

5. Concluding Remarks

There has been great progress in our ability to model the
kinetics of bimolecular reactions. This derives from (i)
improved methods for generating and using reactive potential
energy surfaces, especially implicit potential energy surfaces
generated by direct dynamics, (ii) improved dynamical
algorithms, including practical methods for finding varia-
tional transition states, well-validated multidimensional
methods for including tunneling, and master equation
methods for treating nonequilibrium distributions, especially
in multiwell, multi-arrangement reactions, and (iii) efficient
methods for interfacing i and ii. We anticipate continued
improvements in all three areas.

6. Glossary of Acronyms

Acronyms that are not used after they are defined are not
included here.

Glossary
B3LYP Becke 3-parameter Lee-Yang-Parr density functional
C classical
C coherent switching with decay of mixing
CCUS competitive CUS
CRP corrugation-reducing procedure
CSE chemically significant eigenmode
CUS canonical unified statistical theory
CVT canonical variational (transition state) theory
DFT density functional theory
ESP equilibrium solvation path
EVB empirical valence bond
FR free rotor
G ground state
GT generalized transition-state theory
HF Hartree-Fock
HO harmonic oscillator
HR hindered rotor
IC interpolated corrections
ICVT improved CVT
IERE internal energy relaxation eigenmode
ER Eley-Rideal
ILCT1D LCT based on 1D interpolation
ILCT2D LCT based on 2D interpolation

LCG3 version 3 of the LCT approximation when used with
the ground-state approximation for the transmission
coefficient

LCG4 version 4 of the LCT approximation when used with
the ground-state approximation for the transmission
coefficient

LCT large-curvature tunneling
LEP London-Eyring-Polanyi
LEPS London-Eyring-Polanyi-Sato
LH Langmuir-Hinshelwood
MCCM multicoefficient correlation method
MCMM multi-configuration molecular mechanics
ME master equation
MEP minimum-energy path
MM molecular mechanics
MP2 Møller-Plesset second-order perturbation theory (for

electronic structure)
MT multidimensional tunneling
µOMT microcanonically optimized OMT
µVT microcanonical variational (transition-state) theory
NES nonequilibrium solvation
OMT optimized MT
PES potential energy surface
PST phase-space theory
PT2 second-order perturbation theory (for vibration)
QCT quasiclassical trajectory
R reactant
RODS reorientation (of the) dividing surface
RRKM Rice-Ramsperger-Kassel-Marcus
SCDM self-consistent decay of mixing
SCT small-curvature tunneling
SES separable equilibrium solvation
SN2 bimolecular nucleophilic substitution
SPT simple perturbation theory
SRP specific reaction parameter(s)
TSH trajectory surface hopping
TST transition state theory
UD unified dynamical theory
US (microcanonical) unified statistical theory
VB valence bond
VCI vibrational configuration interaction
VRC variable-reaction ccordinate
VTST variational TST
WFT wave function theory
WKB Wentzel-Brillouin-Kramers
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González-Lafont, A.; Truhlar, D. G.J. Am. Chem. Soc.1991, 113,
9404.

(601) Corchado, J. C.; Espinosa-Garcia, J.; Hu, W.-P.; Rossi, I.; Truhlar,
D. G. J. Phys. Chem.1995, 99, 687.

(602) Steckler, R.; Thurman, G. A.; Watts, J. D.; Bartlett, R. J.J. Chem.
Phys.1997, 106, 3926.

(603) Sekusak, S.; Liedl, K. R.; Rode, B. M.; Sabljic, A.J. Phys. Chem.
A 1997, 101, 4245.

(604) Chuang, Y.-Y.; Truhlar, D. G.J. Phys. Chem. A1998, 102, 242.
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